Skip to main content
Log in

Two parameters scaling approach to Anderson localization of weekly interacting Bose-Einstein condensate

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We numerically study the Anderson localization of weekly interacting Bose-Einstein condensate in a one-dimensional disordered potential. We show that the interacting energy cannot fully convert to the kinetic energy and two parameters are needed to describe such system completely, i.e., the density profile can be described with the sum of two exponential functions. This is a new attempt for precise description of systems with interplay of disorder and interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  2. N. F. Mott, J. Non Cryst. Solids 1, 1 (1968).

    Article  ADS  Google Scholar 

  3. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2010).

    Article  ADS  Google Scholar 

  4. Y. Lahini, R. Pugatch, F. Pozzi, et al., Phys. Rev. Lett. 103, 013901 (2009).

    Article  ADS  Google Scholar 

  5. G. Casati, B. V. Chirikov, F. M. Izraelev, and J. Ford, Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics, Vol. 93 (Springer, Berlin, 1979).

    Book  MATH  Google Scholar 

  6. S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett. 49, 509 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  7. G. Casati, I. Guarneri, and D. L. Shepelyansky, Phys. Rev. Lett. 62, 345 (1989).

    Article  ADS  Google Scholar 

  8. F. L. Moore, J. C. Robinson, C. F. Bharucha, et al., Phys. Rev. Lett. 75, 4598 (1995).

    Article  ADS  Google Scholar 

  9. J. Chabe, G. Lemarie, B. Gremaud, et al., Phys. Rev. Lett. 101, 255702 (2008).

    Article  ADS  Google Scholar 

  10. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  11. B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).

    Article  ADS  Google Scholar 

  12. L. Sanchez-Palencia, D. Clement, P. Lugan, et al., Phys. Rev. Lett. 98, 210401 (2007).

    Article  ADS  Google Scholar 

  13. S.-L. Zhu, L. B. Shao, Z. D. Wang, and L.-M. Duan, Phys. Rev. Lett. 106, 100404 (2011); S.-L. Zhu, B. Wang, and L.-M. Duan, Phys. Rev. Lett. 98, 260402 (2007).

    Article  ADS  Google Scholar 

  14. L. Sanchez-Palencia, D. Clement, P. Bouyer, and A. Aspect, New J. Phys. 10, 045019 (2008).

    Article  ADS  Google Scholar 

  15. A. Aspect and M. Inguscio, Phys. Today 62, 30 (2009).

    Article  Google Scholar 

  16. L. Sanchez-Palencia and M. Lewenstein, Nature Phys. 6, 87 (2010).

    Article  ADS  Google Scholar 

  17. G. Modugno, Rep. Prog. Phys. 73, 102401 (2010).

    Article  ADS  Google Scholar 

  18. B. Shapiro, J. Phys. A 45, 143001 (2012).

    Article  ADS  Google Scholar 

  19. J. M. Huntley, Appl. Opt. 28, 4316 (1989).

    Article  ADS  Google Scholar 

  20. P. Horak, J.-Y. Courtois, and G. Grynberg, Phys. Rev. A 58, 3953 (1998).

    Article  ADS  Google Scholar 

  21. R. Grimm, M. Weidemüller, and Yu. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).

    Article  ADS  Google Scholar 

  22. D. Clément, A. F. Varón, J. A. Retter, et al., New J. Phys. 8, 165 (2006).

    Article  Google Scholar 

  23. S.-L. Zhu, D.-W. Zhang, and Z. D. Wang, Phys. Rev. Lett. 102, 210403 (2009).

    Article  ADS  Google Scholar 

  24. G. Roati, C. D’Errico, L. Fallani, et al., Nature 453, 895 (2008).

    Article  ADS  Google Scholar 

  25. J. Billy, V. Josse, Z. Zuo, et al., Nature 453, 891 (2008).

    Article  ADS  Google Scholar 

  26. P. Lugan, D. Clément, P. Bouyer, et al., Phys. Rev. Lett. 98, 170403 (2007).

    Article  ADS  Google Scholar 

  27. G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, Phys. Rev. Lett. 100, 084103 (2008).

    Article  ADS  Google Scholar 

  28. A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008).

    Article  ADS  Google Scholar 

  29. S. Flach, D. O. Krimer, and C. Skokos, Phys. Rev. Lett. 102, 024101 (2009); S.-L. Zhu and Z. D. Wang, Phys. Rev. Lett. 85, 1076 (2000).

    Article  ADS  Google Scholar 

  30. C. Skokos and S. Flach, Phys. Rev. E 82, 016208 (2010).

    Article  ADS  Google Scholar 

  31. M. Piraud, P. Lugan, P. Bouyer, et al., Phys. Rev. A 83, 031603 (2011).

    Article  ADS  Google Scholar 

  32. A. Cohen, Y. Roth, and B. Shapiro, Phys. Rev. B 38, 12125 (1988).

    Article  ADS  Google Scholar 

  33. B. Shapiro, private communication.

  34. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).

    Article  ADS  Google Scholar 

  35. J. W. Goodman, in Laser Speckle and Related Phenomena, Ed. by J.-C. Dainty (Springer, Berlin, 1975), p. 9.

  36. J. Larson and E. Sjoqvist, Phys. Rev. A 79, 043627 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. -Y. Xue.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Zhang, D.W., Zhang, X.D. et al. Two parameters scaling approach to Anderson localization of weekly interacting Bose-Einstein condensate. Jetp Lett. 97, 239–244 (2013). https://doi.org/10.1134/S0021364013040152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013040152

Keywords

Navigation