Skip to main content
Log in

Topological invariants for fractional quantum hall states

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We calculate a topological invariant, whose value would coincide with the Chern number in the case of integer quantum Hall effect, for fractional quantum Hall states. In the case of Abelian fractional quantum Hall states, this invariant is shown to be equal to the trace of the K-matrix. In the case of non-Abelian fractional quantum Hall states, this invariant can be calculated on a case by case basis from the conformal field theory describing these states. This invariant can be used, for example, to distinguish between different fractional Hall states numerically even though, as a single number, it cannot uniquely label distinct states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  3. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys. 12, 065010 (2010).

    Article  ADS  Google Scholar 

  4. Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Ryu, J. E. Moore, and A. W. W. Ludwig, Phys. Rev. B 85, 045104 (2012).

    Article  ADS  Google Scholar 

  6. G. E. Volovik, The Universe in a Helium Droplet (Oxford Univ. Press, Oxford, 2003), p. 275.

    MATH  Google Scholar 

  7. A. M. Essin and V. Gurarie, Phys. Rev. B 84, 125132 (2011).

    Article  ADS  Google Scholar 

  8. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  9. X. G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1992).

    Article  ADS  Google Scholar 

  10. N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).

    Article  ADS  Google Scholar 

  11. G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Gurarie, Phys. Rev. B 83, 085426 (2011).

    Article  ADS  Google Scholar 

  13. X. G. Wen, Adv. Phys. 44, 405 (1995).

    Article  ADS  Google Scholar 

  14. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover Publications, New York, 1975), p. 168.

    Google Scholar 

  15. J. Moore and X.-G. Wen, Phys. Rev. B 66, 115305 (2002).

    Article  ADS  Google Scholar 

  16. M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett. 99, 236806 (2007).

    Article  ADS  Google Scholar 

  17. S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev. Lett. 99, 236807 (2007).

    Article  ADS  Google Scholar 

  18. W. Bishara and C. Nayak, Phys. Rev. B 77, 165302 (2008).

    Article  ADS  Google Scholar 

  19. S. R. Manmana, A. M. Essin, R. M. Noack, and V. Gurarie, Phys. Rev. B 86, 205119 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurarie, V., Essin, A.M. Topological invariants for fractional quantum hall states. Jetp Lett. 97, 233–238 (2013). https://doi.org/10.1134/S0021364013040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013040061

Keywords

Navigation