Skip to main content
Log in

New topological surface state in layered topological insulators: Unoccupied dirac cone

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The unoccupied states in topological insulators Bi2Se3, PbSb2Te4, and Pb2Bi2Te2S3 are studied by the density functional theory methods. It is shown that a surface state with linear dispersion emerges in the inverted conduction band energy gap at the center of the surface Brillouin zone on the (0001) surface of these insulators. The alternative expression of ℤ2 invariant allowed us to show that a necessary condition for the existence of the second \(\bar \Gamma \) Dirac cone is the presence of local gaps at the time reversal invariant momentum points of the bulk spectrum and change of parity in one of these points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhang, C.-X. Liu, X.-L. Qi, et al., Nature Phys. 5, 438 (2009).

    Article  ADS  Google Scholar 

  2. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  3. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  4. P. Roushan, J. Seo, C. V. Parker, et al., Nature 460, 1106 (2009).

    Article  ADS  Google Scholar 

  5. D. Hsieh, Y. Xia, D. Qian, et al., Nature 460, 1101 (2009).

    Article  ADS  Google Scholar 

  6. Y. L. Chen, J. G. Analytis, J.-H. Chu, et al., Science 325, 178 (2009).

    Article  ADS  Google Scholar 

  7. T. Zhang, P. Cheng, X. Chen, et al., Phys. Rev. Lett. 103, 266803 (2009).

    Article  ADS  Google Scholar 

  8. K. Kuroda, M. Arita, K. Miyamoto, et al., Phys. Rev. Lett. 105, 076802 (2010).

    Article  ADS  Google Scholar 

  9. S. Xu, L. Wray, T. Xia, et al., arXiv:1007.5111.

  10. S. V. Eremeev, Yu. M. Koroteev, and E. V. Chulkov, JETP Lett. 91, 387 (2010).

    Article  ADS  Google Scholar 

  11. Y. H. Wang, D. Hsieh, D. Pilon, et al., Phys. Rev. Lett. 107, 207602 (2011).

    Article  ADS  Google Scholar 

  12. S. V. Eremeev, G. Landolt, T. V. Menshchikova, et al., Nature Commun. 3, 635 (2012).

    Article  ADS  Google Scholar 

  13. K. Miyamoto, A. Kimura, T. Okuda, et al., Phys. Rev. Lett. 109, 166802 (2012).

    Article  ADS  Google Scholar 

  14. J. A. Sobota, S. Yang, J. G. Analytis, et al., Phys. Rev. Lett. 108, 117403 (2012).

    Article  ADS  Google Scholar 

  15. M. Bianchi, D. Guan, S. Bao, et al., Nature Commun. 1, 128 (2010).

    Article  ADS  Google Scholar 

  16. L. A. Wray, S.-Y. Xu, Y. Xia, et al., Nature Phys. 7, 32 (2011).

    Article  ADS  Google Scholar 

  17. Z.-H. Zhu, G. Levy, B. Ludbrook, et al., Phys. Rev. Lett. 107, 186405 (2011).

    Article  ADS  Google Scholar 

  18. T. V. Menshchikova, S. V. Eremeev, and E. V. Chulkov, JETP Lett. 94, 106 (2011).

    Article  ADS  Google Scholar 

  19. L. A. Wray, S. Xu, M. Neupane, et al., arXiv:1105.4794v1.

  20. T. Valla, Z.-H. Pan, D. Gardner, et al., Phys. Rev. Lett. 108, 117601 (2012).

    Article  ADS  Google Scholar 

  21. M. G. Vergniory, T. V. Menshchikova, S. V. Eremeev, et al., JETP Lett. 95, 213 (2012).

    Article  ADS  Google Scholar 

  22. S. V. Eremeev, M. G. Vergniory, T. V. Menshchikova, et al., New J. Phys. 14, 113030 (2012).

    Article  ADS  Google Scholar 

  23. H. M. Benia, C. Lin, K. Kern, et al., Phys. Rev. Lett. 107, 177602 (2011).

    Article  ADS  Google Scholar 

  24. I. V. Silkin, T. V. Menshchikova, M. M. Otrokov, et al., JETP Lett. 96, 322 (2012).

    Article  ADS  Google Scholar 

  25. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  26. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  27. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  28. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  29. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  30. http://www.flapw.de.

  31. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).

    Article  ADS  Google Scholar 

  32. O. V. Yazyev, J. E. Moore, and S. G. Louie, Phys. Rev. Lett. 105, 266806 (2010).

    Article  ADS  Google Scholar 

  33. Z. Wang, X.-L. Qi, and S.-C. Zhang, New J. Phys. 12, 065007 (2010).

    Article  ADS  Google Scholar 

  34. L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  35. X.-L. Qi, T. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  36. L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).

    Article  ADS  Google Scholar 

  37. T. Fukui and Y. Hatsugai, J. Phys. Soc. Jpn. 76, 053702 (2007).

    Article  ADS  Google Scholar 

  38. N. A. Usov, Sov. Phys. JETP 67, 2565 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Eremeev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremeev, S.V., Silkin, I.V., Menshchikova, T.V. et al. New topological surface state in layered topological insulators: Unoccupied dirac cone. Jetp Lett. 96, 780–784 (2013). https://doi.org/10.1134/S0021364012240034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012240034

Keywords

Navigation