Skip to main content
Log in

Giant Rashba-type spin splitting at polar surfaces of BiTeI

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

On the basis of relativistic ab initio calculations, we show that both Te- and I-terminated surfaces of the polar layered semiconductor BiTeI hold surface states with a giant Rashba-type spin splitting. The Te-terminated surface state has nearly isotropic free-electron-like dispersion with a positive effective mass, which along with the giant spin splitting makes BiTeI fulfilling the requirements demanded by many semiconductor-spintronics applications. The I-terminated surface state with its negative effective-mass dispersion reproduces nicely the situation with the Rashba-split surface state on surfaces of noble-metal based surface alloys. The crucial advantage of BiTeI as compared with the surface alloys is the location of the I-terminated surface state in a quite wide band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960); Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984); J. Phys. C 17, 6039 (1984).

    Google Scholar 

  2. M. Studer, G. Salis, K. Ensslin, et al., Phys. Rev. Lett. 103, 027201 (2009).

    Article  ADS  Google Scholar 

  3. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  ADS  Google Scholar 

  4. J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).

    Article  ADS  Google Scholar 

  5. G. Engels, J. Lange, T. Schäers, and H. Lüth, Phys. Rev. B 55, R1958 (1997).

    Article  ADS  Google Scholar 

  6. D. Grundler, Phys. Rev. Lett. 84, 6074 (2000).

    Article  ADS  Google Scholar 

  7. Yu. M. Koroteev, G. Bihlmayer, J. E. Gayone, et al., Phys. Rev. Lett. 93, 046403 (2004).

    Article  ADS  Google Scholar 

  8. C. R. Ast, J. Henk, A. Ernst, et al., Phys. Rev. Lett. 98, 186807 (2007).

    Article  ADS  Google Scholar 

  9. G. Bihlmayer, S. Blügel, and E. V. Chulkov, Phys. Rev. B 75, 195414 (2007).

    Article  ADS  Google Scholar 

  10. C. R. Ast, D. Pacilé, L. Moreschini, et al., Phys. Rev. B 77, 081407(R) (2008).

    Article  ADS  Google Scholar 

  11. H. Mirhosseini, J. Henk, A. Ernst, et al., Phys. Rev. B 79, 245428 (2009).

    Article  ADS  Google Scholar 

  12. K. Ishizaka, M. S. Bahramy, H. Murakawa, et al., Nature Mater. 10, 521 (2011).

    Article  ADS  Google Scholar 

  13. G. Landolt, S. V. Eremeev, Yu. M. Koroteev, et al., Phys. Rev. Lett. 109, 116403 (2012).

    Article  ADS  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396(E) (1997).

    Article  ADS  Google Scholar 

  15. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  16. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  17. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  18. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  19. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).

    Article  ADS  Google Scholar 

  20. A. V. Shevelkov, E. V. Dikarev, R. V. Shpanchenko, and B. A. Popovkin, J. Solid State Chem. 114, 379 (1995).

    Article  ADS  Google Scholar 

  21. M. S. Bahramy, R. Arita, and N. Nagaosa, Phys. Rev. B 84, 041202(R) (2011).

    Article  ADS  Google Scholar 

  22. S. V. Eremeev, I. A. Nechaev, Yu. M. Koroteev, et al., Phys. Rev. Lett. 108, 246802 (2012).

    Article  ADS  Google Scholar 

  23. J. Premper, M. Trautmann, J. Henk, and P. Bruno, Phys. Rev. B 76, 073310 (2007).

    Article  ADS  Google Scholar 

  24. A. Kimura, E. E. Krasovskii, R. Nishimura, et al., Phys. Rev. Lett. 105, 076804 (2010).

    Article  ADS  Google Scholar 

  25. E. E. Krasovskii and E. V. Chulkov, Phys. Rev. B 83, 155401 (2011).

    Article  ADS  Google Scholar 

  26. I. A. Nechaev and E. V. Chulkov, Phys. Solid State 51, 1772 (2009).

    Article  ADS  Google Scholar 

  27. I. A. Nechaev, V. M. Silkin, and E. V. Chulkov, J. Exp. Theor. Phys. 112, 134 (2011).

    Article  ADS  Google Scholar 

  28. P. Lošták, J. Horák, A. Vaško, and Nguyêñtât Dich, Phys. Stat. Solidi A 59, 311 (1980).

    Article  ADS  Google Scholar 

  29. E. I. Rashba, Phys. Rev. B 68, 241315(R) (2003).

    ADS  Google Scholar 

  30. I. V. Tokatly, Phys. Rev. Lett. 101, 106601 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Eremeev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremeev, S.V., Nechaev, I.A. & Chulkov, E.V. Giant Rashba-type spin splitting at polar surfaces of BiTeI. Jetp Lett. 96, 437–444 (2012). https://doi.org/10.1134/S0021364012190071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012190071

Keywords

Navigation