Skip to main content
Log in

Scheme for realizing entanglement concentration via generalized measurements

  • Quantum Information Science
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

How to concentrate non-maximally entangled states for quantum communication is a fundamental problem in quantum information. In this paper, we will apply generalized measurements to entanglement concentration of known non-maximally entangled pure states in arbitrary dimensional system. How to design the generalized measurements for the unambiguous discrimination of linearly independent non-orthogonal states is crucial for the concentration of the known non-maximally entangled states. The result shows that, any known non-maximally entangled pure state (for arbitrary dimensional system) can be transformed to the maximally entangled state only by introducing a qubit as ancilla and a joint unitary transformation operation on one of the entangled particles and the ancilla. In addition, because the less entangled state of each fail round will be re-concentrated too, the entanglement waste during the concentration process will be greatly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996).

    Article  ADS  Google Scholar 

  2. S. Bose, V. Vedral, and P. L. Knight, Phys. Rev. A 60, 194 (1999).

    Article  ADS  Google Scholar 

  3. C. H. Bennett, G. Brassard, S. Popescu, et al., Phys. Rev. Lett. 76, 722 (1996).

    Article  ADS  Google Scholar 

  4. M. Yang, W. Song, and Z. L. Cao, Phys. Rev. A 71, 034312 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Yang, A. Delgado, L. Roa, and C. Saavedra, Opt. Commun. 282, 1482 (2008).

    Article  ADS  Google Scholar 

  6. Z. Zhao, J. W. Pan, and M. S. Zhan, Phys. Rev. A 64, 014301 (2001).

    Article  ADS  Google Scholar 

  7. T. Yamamoto, M. Koashi, and N. Imoto, Phys. Rev. A 64, 012304 (2001).

    Article  ADS  Google Scholar 

  8. L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, J. Opt. Soc. Am. B 29, 630 (2012).

    Article  ADS  Google Scholar 

  9. Y. B. Sheng, L. Zhou, and S. M. Zhao, Phys. Rev. A 85, 042302 (2012).

    Article  ADS  Google Scholar 

  10. Z. Zhao, T. Yang, Y. A. Chen, et al., Phys. Rev. Lett. 90, 207901 (2003).

    Article  ADS  Google Scholar 

  11. T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, Nature 421, 343 (2003).

    Article  ADS  Google Scholar 

  12. Z. L. Cao and M. Yang, J. Phys. B 36, 4245 (2003).

    Article  ADS  Google Scholar 

  13. M. Yang and Z. L. Cao, Physica A 337, 141 (2004).

    Article  ADS  Google Scholar 

  14. M. Z. L. Cao, M. Yang, and G. C. Guo, Phys. Lett. A 308, 349 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, Quantum Inf. Process 11, 431 (2012).

    Article  MATH  Google Scholar 

  16. N. Paunković, Y. Omar, S. Bose, and V. Vedral, Phys. Rev. Lett. 88, 187903 (2002).

    Article  ADS  Google Scholar 

  17. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. D. Kaszlikowski, P. Gnaciński, M. Zukowski, et al., Phys. Rev. Lett. 85, 4418 (2000).

    Article  ADS  Google Scholar 

  20. H. Bechmann-Pasquinucci and W. Tittel, Phys. Rev. A 61, 062308 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  21. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002).

    Article  ADS  Google Scholar 

  22. J. C. Howell, A. Lamas-Linares, and D. Bouwmeester, Phys. Rev. Lett. 88, 030401 (2002).

    Article  ADS  Google Scholar 

  23. H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Quant. Inf. Comp. 2, 425 (2002).

    MATH  Google Scholar 

  24. A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002).

    Article  ADS  Google Scholar 

  25. L. Neves, G. Lima, J. G. Aguirre-Gómez, et al., Phys. Rev. Lett. 94, 100501 (2005).

    Article  ADS  Google Scholar 

  26. C. M. Yao, Y. J. Gu, L. Ye, and G. C. Guo, Chin. Phys. Lett. 19, 1242 (2002).

    Article  ADS  Google Scholar 

  27. A. Vaziri, J. W. Pan, T. Jennewein, et al., Phys. Rev. Lett. 91, 227902 (2003).

    Article  ADS  Google Scholar 

  28. A. Chefles, Phys. Lett. A 239, 339 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. B. He and J. A. Bergou, Phys. Lett. A 356, 306 (2006).

    Article  ADS  MATH  Google Scholar 

  30. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 84, 2014 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Ryu, W. Cai, and A. Caro, Phys. Rev. A 77, 052312 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, C.Q., Yang, M., Lu, Y. et al. Scheme for realizing entanglement concentration via generalized measurements. Jetp Lett. 96, 486–490 (2012). https://doi.org/10.1134/S0021364012190058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012190058

Keywords

Navigation