Skip to main content
Log in

Self-assembly of charged CdTe nanoparticles

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We show a method of the organization of charged CdTe nanoparticles which allows the generation of a self-assembled monolayer of above 10.000 μm2 in a time of about 90 s. The analysis of adsorption kinetics of particles on a surface shows that it is well described by the Langmuir isotherm. We have found that thermal and electrical conductivity of a substrate play an important role. Nevertheless, deficiency of a substrate does not affect the adsorption kinetic. The structure of a formed monolayer essentially depends on pH and, as a consequence, on the charge of the particles. This method can be effective for the production of a CdTe nanoparticle monolayer with well controlled area and a degree of filling on a surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Shipway, E. Katz, and I. Willner, Chem. Phys. Chem. 1, 18 (2000).

    Article  Google Scholar 

  2. C. T. Black, C. B. Murray, R. L. Sandstrom, and S. Sun, Science 290, 1131 (2000).

    Article  ADS  Google Scholar 

  3. S. A. Majetich, T. Wen, and R. A. Booth, ACS Nano 5, 6081 (2011).

    Article  Google Scholar 

  4. Z. Nie, A. Petukhova, and E. Kumacheva, Nature Nanotech. 5, 15 (2010).

    Article  ADS  Google Scholar 

  5. V. F. Puntes, P. Gorostiza, D. M. Aruguete, et al., Nature Mater. 3, 263 (2004).

    Article  ADS  Google Scholar 

  6. T. P. Bigioni, X.-M. Lin, T. T. Nguyen, et al., Nature Mater. 5, 265 (2006).

    Article  ADS  Google Scholar 

  7. J. J. Urban, D. V. Talapin, E. V. Shevchenko, et al., Nature Mater. 6, 115 (2007).

    Article  ADS  Google Scholar 

  8. R. D. Deegan, O. Bakajin, T. F. Dupont, et al., Nature 389, 827 (1997).

    Article  ADS  Google Scholar 

  9. S. Maenosono, C. D. Dushkin, S. Saita, and Y. Yamaguchi, Langmuir 15, 957 (1999).

    Article  Google Scholar 

  10. B. A. Korgel and D. Fitzmaurice, Phys. Rev. Lett. 80(16), 3531 (1998).

    Article  ADS  Google Scholar 

  11. G. Ge and L. Brus, J. Phys. Chem. B 104, 9573 (2000).

    Article  Google Scholar 

  12. Z. L. Wang, Adv. Mater. 10, 13 (1998).

    Article  Google Scholar 

  13. X. M. Lin, H. M. Jaeger, C. M. Sorensen, and K. J. Klabunde, J. Phys. Chem. B 105, 3353 (2001).

    Article  Google Scholar 

  14. E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus, Nature 426, 271 (2003).

    Article  ADS  Google Scholar 

  15. L. Yu. Barash, T. P. Bigioni, V. M. Vinokur, and L. N. Phys. Rev. E 79, 046301 (2009).

    Google Scholar 

  16. L. E. Scriven and C. V. Sternling, Nature 187, 186 (1960).

    Article  ADS  Google Scholar 

  17. M. P. Pileni, J. Phys. Chem. B 105, 3358 (2001).

    Article  Google Scholar 

  18. A. Kampes and B. Tieke, Mater. Sci. Eng. C 8–9, 195 (1999).

    Article  Google Scholar 

  19. A. Snezhko and I. S. Aranson, Nature Mater. 10, 698 (2011).

    Article  ADS  Google Scholar 

  20. P. Rodgers, Nature Nanotechnol. 2, 342 (2007).

    Article  ADS  Google Scholar 

  21. Z. Tang, N. A. Kotov, and M. Giersig, Science 297, 237 (2002).

    Article  ADS  Google Scholar 

  22. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, ACS Nano 4, 3591 (2010).

    Article  Google Scholar 

  23. W. W. Yu, Y. A. Wang, and X. Peng, Chem. Mater. 15, 4300 (2003).

    Article  Google Scholar 

  24. S. F. Wuister, I. Swart, F. van Driel, et al., Nano Lett. 3, 503 (2003).

    Article  ADS  Google Scholar 

  25. M. J. Frank, J. A. M. Kuipers, and W. P. M. van Swaaij, J. Chem. Eng. Data 41, 297 (1996).

    Article  Google Scholar 

  26. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969).

    Google Scholar 

  27. F. Qu and P. C. Morais, J. Phys. Chem. B 104, 5232 (2000).

    Article  Google Scholar 

  28. J. Richardi, J. Chem. Phys. 130, 044701 (2009).

    Article  ADS  Google Scholar 

  29. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  30. L. C. Hulstrom, Thermal Conductivity (Plenum, New York, 1988), Ch. 19.

    Google Scholar 

  31. D. P. Needham and H. Ziebland, Int. J. Heat Mass Transfer 8, 1387 (1965).

    Article  Google Scholar 

  32. W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).

    Article  ADS  Google Scholar 

  33. S. R. P. Silva, Properties of Amorphous Carbon (INSPEC, London, 2003).

    Google Scholar 

  34. D. K. Schwartz, Ann. Rev. Phys. Chem. 52, 107 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Voylov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voylov, D.N., Nikolenko, L.M., Nikolenko, D.Y. et al. Self-assembly of charged CdTe nanoparticles. Jetp Lett. 95, 656–661 (2012). https://doi.org/10.1134/S0021364012120168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012120168

Keywords

Navigation