Skip to main content
Log in

Spontaneously broken Lorentz invariance from the dynamics of a heavy sterile neutrino

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A relativistic theory for neutrino superluminality is presented (in principle, the same mechanism applies also to other fermions). The theory involves the standard-model particles and one additional heavy sterile neutrino with an energy-scale close to or above the electroweak one, all particles propagating in the usual 3 + 1 spacetime dimensions. Lorentz violation results from spontaneous symmetry breaking in the sterile-neutrino sector. The theory tries, as far as possible, to be consistent with the existing experimental data from neutrino physics and to keep the number of assumptions minimal. There are clear experimental predictions which can be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Adamson et al. (MINOS Collab.), Phys. Rev. D 76, 072005 (2007); arXiv:0706.0437.

    Article  ADS  Google Scholar 

  2. T. Adam et al. (OPERA Collab.), arXiv:1109.4897v2.

  3. A CERN press release from the OPERA Collaboration (dated February 23, 2012) states that two possible errors have been found and that new short-pulse measurements are scheduled for May, 2012.

  4. M. Antonello et al. (ICARUS Collab.), arXiv:1203.3433v3.

  5. Many papers on superluminal neutrinos have appeared since September 23, 2011 (see http://inspirehep.net/ for all papers quoting OPERA’s first preprint [2]), but, here, we only refer to those of direct relevance to our discussion.

  6. K. Hirata et al. (KAMIOKANDE-II Collab.), Phys. Rev. Lett. 58, 1490 (1987); R. M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  7. M. J. Longo, Phys. Rev. D 36, 3276 (1987); L. Stodolsky, Phys. Lett. B 201, 353 (1988).

    Article  ADS  Google Scholar 

  8. S. R. Coleman and S. L. Glashow, Phys. Rev. D 59, 116008 (1999); arXiv:hep-ph/9812418.

    Article  ADS  Google Scholar 

  9. A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 107, 181803 (2011); arXiv:1109.6562.

    Article  ADS  Google Scholar 

  10. G. F. Giudice, S. Sibiryakov, and A. Strumia, Nucl. Phys. B 861, 1 (2012); arXiv:1109.5682.

    Article  ADS  Google Scholar 

  11. S. Hannestad and M. S. Sloth, arXiv:1109.6282.

  12. A. Nicolaidis, arXiv:1109.6354.

  13. W. Winter, Phys. Rev. D 85, 017301 (2012); arXiv:1110.0424.

    Article  ADS  Google Scholar 

  14. F. R. Klinkhamer, Phys. Rev. D 85, 016011 (2012); arXiv:1110.2146.

    Article  ADS  Google Scholar 

  15. S. Mohanty and S. Rao, arXiv:1111.2725v4.

  16. C. Kaufhold and F. R. Klinkhamer, Nucl. Phys. B 734, 1 (2006); arXiv:hep-th/0508074.

    Article  ADS  MATH  Google Scholar 

  17. C. Kaufhold and F. R. Klinkhamer, Phys. Rev. D 76, 025024 (2007); arXiv:0704.3255.

    Article  ADS  Google Scholar 

  18. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 94, 673 (2011); arXiv:1109.6624.

    Article  Google Scholar 

  19. S. Nojiri and S. D. Odintsov, Eur. Phys. J. C 71, 1801 (2011); arXiv:1110.0889.

    Article  ADS  Google Scholar 

  20. M. Veltman, Diagrammatica-The Path to Feynman Rules (Cambridge Univ. Press, Cambridge, England, 1994), Appendix E.

  21. T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particle Physics (Clarendon, Oxford, UK, 1984).

    Google Scholar 

  22. See, in particular, Table II of Ref. [23] with experimental upper bounds on |ν νc|/c at the 10−4 level for neutrino energies up to 200 GeV.

  23. G. R. Kalbfleisch, N. Baggett, E. C. Fowler, and J. Alspector, Phys. Rev. Lett. 43, 1361 (1979).

    Article  ADS  Google Scholar 

  24. B. Altschul, Astropart. Phys. 28, 380 (2007); arXiv:hepph/0610324.

    Article  ADS  Google Scholar 

  25. J. D. Bjorken, Ann. Phys. 24, 174 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Jenkins, Phys. Rev. D 69, 105007 (2004); arXiv:hepth/0311127.

    Article  ADS  Google Scholar 

  27. V. A. Kostelecky, Phys. Rev. D 69, 105009 (2004); arXiv:hep-th/0312310.

    Article  ADS  Google Scholar 

  28. F. R. Klinkhamer, arXiv:1202.0531.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Klinkhamer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinkhamer, F.R. Spontaneously broken Lorentz invariance from the dynamics of a heavy sterile neutrino. Jetp Lett. 95, 497–500 (2012). https://doi.org/10.1134/S0021364012100062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012100062

Keywords

Navigation