Skip to main content
Log in

Absence of metallization in solid molecular hydrogen

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Being the simplest element with just one electron and proton the electronic structure of a single Hydrogen atom is known exactly. However, this does not hold for the complex interplay between them in a solid and in particular not at high pressure that is known to alter the crystal as well as the electronic structure and eventually causes solid hydrogen to become metallic. In spite of intense research efforts the experimental realization of metallic hydrogen, as well as the theoretical determination of the crystal structure has remained elusive. Here we present a computational study showing that the distorted hexagonal P63/m structure is the most likely candidate for Phase III of solid hydrogen. We find that the pairing structure is very persistent and insulating over the whole pressure range, which suggests that metallization due to dissociation may precede eventual bandgap closure. Due to the fact that this not only resolve one of major disagreement between theory and experiment, but also excludes the conjectured existence of phonon-driven superconductivity in solid molecular hydrogen, our results involve a complete revision of the zero-temperature phase diagram of Phase III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  2. A. Alavi, M. Parrinello, and D. Frenkel, Science 269, 1252 (1995).

    Article  ADS  Google Scholar 

  3. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  4. S. A. Bonev, E. Schwegler, T. Ogitsu, and G. Galli, Nature (London) 431, 669 (2004).

    Article  ADS  Google Scholar 

  5. S. Scandolo, Proc. Natl. Acad. Sci. USA 100, 3051 (2003).

    Article  ADS  Google Scholar 

  6. S. Deemyad and Y. F. Silvera, Phys. Rev. Lett. 100, 155701 (2008).

    Article  ADS  Google Scholar 

  7. M. I. Eremets and I. A. Trojan, JETP Lett. 89, 174 (2009).

    Article  ADS  Google Scholar 

  8. M. I. Eremets and I. A. Troyan, Nature Mater. 10, 927 (2011).

    Article  ADS  Google Scholar 

  9. D. E. Ramaker, L. Kumar, and F. E. Harris, Phys. Rev. Lett. 34, 812 (1975).

    Article  ADS  Google Scholar 

  10. T. W. Barbee III, M. L. Cohen, and J. L. Martins, Phys. Rev. Lett. 62, 1150 (1989).

    Article  ADS  Google Scholar 

  11. T. W. Barbee III, A. Carcia, and M. L. Cohen, Nature (London) 340, 369 (1989).

    Article  ADS  Google Scholar 

  12. C. F. Richardson and N. W. Ashcroft, Phys. Rev. Lett. 78, 118 (1997).

    Article  ADS  Google Scholar 

  13. R. J. Hemley and H. K. Mao, Phys. Rev. Lett. 61, 857 (1988).

    Article  ADS  Google Scholar 

  14. H. E. Lorenzana, I. F. Silvera, and K. A. Goettel, Phys. Rev. Lett. 63, 2080 (1989).

    Article  ADS  Google Scholar 

  15. H. K. Mao and R. J. Hemley, Science 244, 1462 (1989).

    ADS  Google Scholar 

  16. N. H. Chen, E. Sterer, and I. F. Silvera, Phys. Rev. Lett. 76, 1663 (1996).

    Article  ADS  Google Scholar 

  17. R. J. Hemley, H.-K. Mao, A. F. Goncharov, et al., Phys. Rev. Lett. 76, 1667 (1996).

    Article  ADS  Google Scholar 

  18. D. M. Ceperley and B. J. Alder, Phys. Rev. B 36, 2092 (1987).

    Article  ADS  Google Scholar 

  19. H. Chacham and S. G. Louie, Phys. Rev. Lett. 66, 64 (1991).

    Article  ADS  Google Scholar 

  20. E. Kaxiras, J. Broughton, and R. J. Hemley, Phys. Rev. Lett. 67, 1138 (1991).

    Article  ADS  Google Scholar 

  21. A. Alavi, Phil. Trans. R. Soc. A 356, 263 (1998).

    Article  ADS  Google Scholar 

  22. J. Kohanoff, S. Scandolo, S. de Gironcoli, and E. Tosatti, Phys. Rev. Lett. 83, 4097 (1999).

    Article  ADS  Google Scholar 

  23. K. A. Johnson and N. W. Ashcroft, Nature (London) 403, 632 (2000).

    Article  ADS  Google Scholar 

  24. M. Städele and R. M. Martin, Phys. Rev. Lett. 84, 6070 (2000).

    Article  ADS  Google Scholar 

  25. C. J. Pickard and R. J. Needs, Nature Phys. 3, 473 (2007).

    Article  ADS  Google Scholar 

  26. J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

    Article  ADS  Google Scholar 

  27. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 39 (2009).

    Article  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  29. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  30. R. J. Hemley, Z. G. Soos, M. Hanfland, and H.-K. Mao, Nature (London) 369, 384 (1994).

    Article  ADS  Google Scholar 

  31. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

    Article  ADS  Google Scholar 

  32. M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418 (1985).

    Article  ADS  Google Scholar 

  33. A. Marini, G. Hogan, M. Grüning, and D. Varsano, Comput. Phys. Commun. 180, 1392 (2009).

    Article  ADS  Google Scholar 

  34. P. Loubeyre, F. Occelli, and R. LeToullec, Nature (London) 416, 613 (2002).

    Article  ADS  Google Scholar 

  35. J. M. McMahon and D. M. Ceperley, Phys. Rev. Lett. 106, 165302 (2011).

    Article  ADS  Google Scholar 

  36. V. Natoli, R. M. Martin, and D. M. Ceperley, Phys. Rev. Lett. 74, 1601 (1995).

    Article  ADS  Google Scholar 

  37. D. M. Straus and N. W. Ashcroft, Phys. Rev. Lett. 38, 415 (1977).

    Article  ADS  Google Scholar 

  38. B. Edwards and N. W. Ashcroft, Nature (London) 388, 652 (1997).

    Article  ADS  Google Scholar 

  39. J. Kohanoff, S. Scandolo, G. L. Chiarotti, and E. Tosatti, Phys. Rev. Lett. 78, 2783 (1997).

    Article  ADS  Google Scholar 

  40. T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. D. Kühne.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azadi, S., Kühne, T.D. Absence of metallization in solid molecular hydrogen. Jetp Lett. 95, 449–453 (2012). https://doi.org/10.1134/S0021364012090020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012090020

Keywords

Navigation