Skip to main content
Log in

On the implementation of the coexistence phase of antiferromagnetism and superconductivity in heavy-fermion intermetallides

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The region of the state diagram in which the pressure-induced quantum phase transition occurs with the destruction of the antiferromagnetic ordering and the appearance of the superconductivity has been described within the periodic Anderson model. It has been shown that a microscopically homogeneous coexistence phase of antiferromagnetism and superconductivity is implemented in the vicinity of the critical point, which was experimentally found in the heavy-fermion compound CeRhIn5. In this region, the pressure increase is accompanied by the experimentally observed strong growth of the effective fermion mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009).

    Article  ADS  Google Scholar 

  2. N. D. Mathur, F. M. Grosche, S. R. Julian, et al., Nature 394, 39 (1998).

    Article  ADS  Google Scholar 

  3. H. Hegger, C. Petrovic, E. G. Moshopoulou, et al., Phys. Rev. Lett. 84, 4986 (2000).

    Article  ADS  Google Scholar 

  4. M. Nicklas, V. A. Sidorov, H. A. Borges, et al., Phys. Rev. B 67, 020506 (2003).

    Article  ADS  Google Scholar 

  5. S. Nakatsuji, D. Pines, and Z. Fisk, Phys. Rev. Lett. 92, 016401 (2004).

    Article  ADS  Google Scholar 

  6. Yi-feng Yang, Z. Fisk, Han-Oh Lee, et al., Nature 454, 611 (2008).

    Article  ADS  Google Scholar 

  7. Yi-feng Yang, N. J. Curro, Z. Fisk, et al., J. Phys.: Conf. Ser. 273, 012066 (2011).

    Article  ADS  Google Scholar 

  8. P. D. Sacramento, J. Phys.: Cond. Mat. 15, 6285 (2003).

    Article  ADS  Google Scholar 

  9. J. V. Alvarez and F. Yundurain, Phys. Rev. Lett. 98, 126406 (2007).

    Article  ADS  Google Scholar 

  10. T. Park and J. D. Thompson, New J. Phys. 11, 055062 (2009).

    Article  ADS  Google Scholar 

  11. V. Barzykin, Phys. Rev. B 73, 094455 (2006).

    Article  ADS  Google Scholar 

  12. V. V. Val’kov and D. M. Dzebisashvili, Theor. Math. Phys. 157, 1565 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. M. Plakida, Theor. Math. Phys. 154, 108 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. M. Plakida, High-Temperature Cuprate Superconductors. Experiment, Theory, and Applications (Springer, Berlin, 2008).

    Google Scholar 

  15. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Article  ADS  MATH  Google Scholar 

  16. Y. Kohori, Y. Yamato, Y. Iwamoto, and T. Kohara, Eur. Phys. J. B 18, 601 (2000).

    Article  ADS  Google Scholar 

  17. S. Kawasaki, T. Mito, Y. Kawasaki, et al., Phys. Rev. Lett. 91, 137001 (2003).

    Article  ADS  Google Scholar 

  18. Y. Fuseya, H. Kohno, and K. Miyake, J. Phys. Soc. Jpn. 72, 2914 (2003).

    Article  ADS  MATH  Google Scholar 

  19. Y. Bang, M. J. Graf, A. V. Balatsky, and J. D. Thompson, Phys. Rev. B 69, 014505 (2004).

    Article  ADS  Google Scholar 

  20. T. Park, E. D. Bauer, and J. D. Thompson, Phys. Rev. Lett. 101, 177002 (2008).

    Article  ADS  Google Scholar 

  21. V. V. Val’kov and D. M. Dzebisashvili, J. Exp. Theor. Phys. 110, 301 (2010).

    Article  ADS  Google Scholar 

  22. T. Park, Y. Tokiwa, E. D. Bauer, et al., Physica B 403, 943 (2008).

    Article  ADS  Google Scholar 

  23. T. Mito, S. Kawasaki, Y. Kawasaki, et al., Phys. Rev. Lett. 90, 077004 (2003).

    Article  ADS  Google Scholar 

  24. A. Llobet, J. S. Gardner, E. G. Moshopoulou, et al., Phys. Rev. B 69, 024403 (2004).

    Article  ADS  Google Scholar 

  25. D. I. Khomskii, Sov. Phys. Usp. 22, 879 (1979).

    Article  ADS  Google Scholar 

  26. R. A. Fisher, F. Bouquet, N. E. Phillips, et al., Phys. Rev. B 65, 224509 (2002).

    Article  ADS  Google Scholar 

  27. H. Shishido, R. Settai, H. Harima, and Y. Onuki, J. Phys. Soc. Jpn. 74, 1103 (2005).

    Article  ADS  Google Scholar 

  28. G. Knebel, D. Aoki, J.-P. Brison, and J. Flouquet, J. Phys. Soc. Jpn. 77, 114704 (2008).

    Article  ADS  Google Scholar 

  29. V. V. Val’kov and D. M. Dzebisashvili, Theor. Math. Phys. 162, 106 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

Original Russian Text © V.V. Val’kov, A.O. Zlotnikov, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 95, No. 7, pp. 390–396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Val’kov, V.V., Zlotnikov, A.O. On the implementation of the coexistence phase of antiferromagnetism and superconductivity in heavy-fermion intermetallides. Jetp Lett. 95, 350–356 (2012). https://doi.org/10.1134/S0021364012070089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012070089

Keywords

Navigation