Skip to main content
Log in

Atomic structure of a 1T-TiSe2 surface layer from photoelectron and Auger electron holography data

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) reconstruction of the atomic structure of the (100) surface of a 1T-TiSe2 layered dichalcogenide crystal has been performed from X-ray photoelectron and Auger electron diffraction data. The diffraction patterns of the emission of Auger electrons of Se(LMM) selenium and photoelectrons of Ti2p titanium have been considered as holographic diagrams. Being processed with the scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM), they provide individual 3D images of the nearest environment of selenium and titanium atoms in the TiSe2 lattice. Using reconstructed 3D images, the positions of 128 atoms in the 2 × 2 × 1.5-nm region of the surface layer of TiSe2 have been determined. The structure of the surface has a 1T polytype. Interatomic distances in the layer and van der Waals gap are larger than the respective parameters in the bulk of the crystal. It is assumed that titanium layers in two Se-Ti-Se upper surface structural units are displaced along the [001] axis. The structure of the surface layer can be described by a unit cell of the P3 space group with the parameters a = 3.85 Å and c = 14.4 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. C. S. Fadley, Synchrotron Radiation Research: Advances in Surface Science (Plenum, New York, 1990).

    Google Scholar 

  2. C. Westphal, Surf. Sci. Rep. 50, 1 (2003).

    Article  ADS  Google Scholar 

  3. E. V. Shalaeva and M. V. Kuznetsov, J. Struct. Chem. 44, 465 (2003).

    Article  Google Scholar 

  4. A. Szöke, in Short Wavelength Coherent Radiation: Generation and Applications, Ed. by D. T. Attwood and J. Bokor, AIP Conf. Proc. 147, 361 (1986).

  5. D. Gabor, Nature 161, 777 (1948).

    Article  ADS  Google Scholar 

  6. J. J. Barton, Phys. Rev. Lett. 61, 1356 (1988).

    Article  ADS  Google Scholar 

  7. J. J. Barton, Phys. Rev. Lett. 67, 3106 (1991).

    Article  ADS  Google Scholar 

  8. G. R. Harp, D. K. Saldin, and B. P. Tonner, Phys Rev. Lett. 65, 1012 (1990).

    Article  ADS  Google Scholar 

  9. L. J. Terminello, J. J. Barton, and D. A. Lapiano-Smith, Phys Rev. Lett. 70, 599 (1993).

    Article  ADS  Google Scholar 

  10. I. I. Ogorodnikov, A. S. Razinkin, and M. V. Kuznetsov, PSiS 28, 24 (2011).

    Google Scholar 

  11. F. J. Garcia de Abajo, M. A. Van Hove, and C. S. Fadley, Phys. Rev. B 63, 075404 (2001).

    Article  ADS  Google Scholar 

  12. T. Matsushita, F. Z. Guo, M. Suzuki, et al., Phys. Rev. B 78, 144111 (2008).

    Article  ADS  Google Scholar 

  13. T. Matsushita, F. Matsui, H. Daimon, et al., J. Electron. Spectrosc. Relat. Phenom. 178–179, 179 (2010).

    Google Scholar 

  14. R. Denecke, R. Eckstein, L. Ley, et al., in Proceedings of the 14th European Conference, Surf. Sci. B 331–333, 1085 (1995).

    Google Scholar 

  15. A. S. Razinkin, A. N. Enyashin, T. V. Kuznetsova, et al., J. Struct. Chem. 51, 737 (2010).

    Article  Google Scholar 

  16. K. Rossnagel, J. Phys.: Condens. Matter 23, 213001 (2011).

    Article  ADS  Google Scholar 

  17. V. G. Pleshchev, A. N. Titov, and A. V. Kuranov, Phys. Solid State 39, 1442 (1997).

    Article  ADS  Google Scholar 

  18. S. Omori, L. Zhao, S. Marchesini, et al., Phys. Rev. B 65, 014106 (2001).

    Article  ADS  Google Scholar 

  19. F. Groenvold and F. J. Langmyhr, Acta Chem. Scand. 15, 1949 (1961).

    Article  Google Scholar 

  20. O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  21. A. I. Gusev, Nonstoichiometry, Chaos, Short-, and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  22. G. S. Herman, S. Thevuthasan, T. T. Tran, et al., Phys. Rev. Lett. 68, 650 (1992).

    Article  ADS  Google Scholar 

  23. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 21, 165 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ogorodnikov.

Additional information

Original Russian Text © I.I. Ogorodnikov, A.S. Vorokh, A.N. Titov, M.V. Kuznetsov, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 95, No. 7, pp. 414–422.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogorodnikov, I.I., Vorokh, A.S., Titov, A.N. et al. Atomic structure of a 1T-TiSe2 surface layer from photoelectron and Auger electron holography data. Jetp Lett. 95, 372–379 (2012). https://doi.org/10.1134/S0021364012070065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012070065

Keywords

Navigation