Skip to main content
Log in

Scaling of the energy of ion beams in the low-altitude plasma sheet boundary layer

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The scaling of the energy of ion beams (beamlets) in resonance regions of the low-altitude plasma sheet boundary layer has been analyzed using the measurements made on the Interball-2 and Cluster satellites at distances of 3.0 to 6.0 Earth’s radii and numerical simulations of the acceleration of ions in the current sheet of the Earth’s magnetotail. The experimental test of the previously theoretically predicted scaling W N N A (where W N is the energy at the Nth resonance and A ∼ 1.33) shows that the real scaling of resonance energies varies in a wide range A ∈ [0.61, 1.75] and is independent of the geomagnetic indices K p and AE. Model calculations with allowance for an electric field E z perpendicular to the current sheet are in good agreement with the experimental data. They indicate that the scaling increases in the case of the dominance of the ion current and decreases in the case of the dominance of the electron current (A > 1.33 and A < 1.33, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Eastman, L. A. Frank, W. K. Peterson, and O. W. Lennartsson, J. Geophys. Res. 89, 1553 (1984).

    Article  ADS  Google Scholar 

  2. G. K. Parks, C. S. Lin, K. A. Anderson, et al., J. Geophys. Res. 84, 6471 (1979).

    Article  ADS  Google Scholar 

  3. K. Takahashi and E. W. Hones, J. Geophys. Res. 93, 8558 (1988).

    Article  ADS  Google Scholar 

  4. E. E. Grigorenko, J.-A. Sauvaud, and L. M. Zelenyi, J. Geophys. Res. 112, A05218 (2007).

    Article  ADS  Google Scholar 

  5. L. M. Zelenyi, E. E. Grigorenko, and A. O. Fedorov, JETP Lett. 80, 663 (2004).

    Article  ADS  Google Scholar 

  6. J. Büchner and L. M. Zelenyi, J. Geophys. Res. 94, 11821 (1989).

    Article  ADS  Google Scholar 

  7. L. M. Zelenyi, M. S. Dolgonosov, E. E. Grigorenko, and J.-A. Sauvaud, JETP Lett. 85, 187 (2007).

    Article  ADS  Google Scholar 

  8. M. S. Dolgonosov, G. Zimbardo, and A. Greco, J. Geophys. Res. 115, A02209 (2010).

    Article  ADS  Google Scholar 

  9. J. M. Bosqued, M. Ashour-Abdalla, M. El-Alaoui, et al., J. Geophys. Res. 98, 19181 (1993).

    Article  ADS  Google Scholar 

  10. L. M. Zelenyi, R. A. Kovrazkhin, and J. M. Bosqued, J. Geophys. Res. 95(A8), 12119 (1990).

    Article  ADS  Google Scholar 

  11. R. A. Kovrazhkin, J. M. Bosked, L. M. Zelenyi, and N. V. Dzhordzhio, JETP Lett. 45, 479 (1987).

    ADS  Google Scholar 

  12. R. D. Elphinstone, D. J. Hearn, L. L. Cogger, et al., J. Geophys. Res. 100, 12093 (1995).

    Article  ADS  Google Scholar 

  13. T. G. Onsager and T. Mukai, Geophys. Res. Lett. 22, 855 (1995).

    Article  ADS  Google Scholar 

  14. Y. Saito, T. Mukai, M. Hirahara, et al., Geophys. Res. Lett. 19, 215 (1992).

    Article  Google Scholar 

  15. P. Janhunen, A. Olson, W. K. Peterson, et al., Ann. Geophys. 23, 867 (2005).

    Article  ADS  Google Scholar 

  16. R. A. Kovrazhkin and J.-A. Sauvaud, in Auroral Phenomena and Solar-Terrestrial Relations, CAWSES Handbook-1 (2004), p. 165.

  17. O. W. Lennartsson, K. J. Trattner, H. L. Collin, and W. K. Peterson, J. Geophys. Res. 112, 5859 (2001).

    Article  ADS  Google Scholar 

  18. J.-A. Sauvaud and R. A. Kovrazhkin, J. Geophys. Res. 109, A12213 (2004).

    Article  ADS  Google Scholar 

  19. J.-A. Sauvaud, H. Barthe, C. Aoustin, et al., Ann. Geophys. 16, 1056 (1998).

    Article  ADS  Google Scholar 

  20. H. Réme, J.-M. Bosqued, J.-A. Sauvaud, et al., Space Sci. Rev. 79, 303 (1997).

    Article  ADS  Google Scholar 

  21. W. Zwingmann, J. Geophys. Res. 88, 9101 (1983).

    Article  ADS  Google Scholar 

  22. J. A. Slavin, J. Geophys. Res. 90, 10875 (1985).

    Article  ADS  Google Scholar 

  23. A. Greco, R. de Bartolo, G. Zimbardo, and P. Veltri, J. Geophys. Res. 112, A06218 (2007).

    Article  ADS  Google Scholar 

  24. M. I. Sitnov, P. N. Guzdar, and M. Swisdak, Geophys. Res. Lett. 30, 1712 (2003).

    Article  Google Scholar 

  25. J. R. Wygant, C. A. Cattell, R. Lysak, et al., J. Geophys. Res. 110, A09206 (2005).

    Article  ADS  Google Scholar 

  26. L. M. Zeleny, H. V. Malova, V. Yu. Popov, et al., Nonlin. Processes Geophys. 11, 579 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kovrazhkin.

Additional information

Original Russian Text © R.A. Kovrazhkin, M.S. Dolgonosov, J.-A. Sauvaud, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 95, No. 5, pp. 258–262.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovrazhkin, R.A., Dolgonosov, M.S. & Sauvaud, J.A. Scaling of the energy of ion beams in the low-altitude plasma sheet boundary layer. Jetp Lett. 95, 234–238 (2012). https://doi.org/10.1134/S0021364012050050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012050050

Keywords

Navigation