Skip to main content
Log in

Qubits based on spectrally selected groups of Pr3+ ions in a LaF3 crystal

  • Quantum Information Science
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Spectral selection, i.e., the separation of a group of particles with a spread in resonance frequencies smaller than the hyperfine splitting of working levels has been implemented by the method of burning of long-lived spectral dips in the inhomogeneously broadened absorption line of Pr3+ in a LaF3 crystal. The possibility of implementing qubits (basic elements of quantum computations) on ensembles of spectrally selected particles and the main operations with them, including the manipulation of the populations of hyperfine (qubit) levels and the controlled shift of the absorption line of one spectrally selected group of ions upon excitation of another group (two-qubit operations), has been demonstrated. The decay rates of the population of hyperfine sublevels of the ground state of the spectrally selected group of particles have been measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Valiev, Phys. Usp. 48, 1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  2. I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Phys. Usp. 44, 597 (2001).

    Article  ADS  Google Scholar 

  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge Univ. Press, Cambridge, 2004; Mir, Moscow, 2006).

    Google Scholar 

  4. T. D. Ladd, F. Jelezko, R. Laflamme, et al., Nature 464, 45 (2010).

    Article  ADS  Google Scholar 

  5. N. Ohlsson, R. K. Mohan, and S. Kröll, Opt. Commun. 201, 71 (2002).

    Article  ADS  Google Scholar 

  6. A. Walther, B. Julsgaard, L. Rippe, et al., Phys. Scripta T 137, 1 (2009).

    Google Scholar 

  7. S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, Phys. Rev. A 80, 032308 (2009).

    Article  ADS  Google Scholar 

  8. A. K. Rebane, C. W. Thiel, R. K. Mohan, and R. L. Cone, Proc. SPIE 7611, 76110H (2010).

    Article  ADS  Google Scholar 

  9. E. Fraval, M. J. Sellars, and J. J. Longdell, Phys. Rev. Lett. 95, 030506 (2005).

    Article  ADS  Google Scholar 

  10. S. Bertaina, S. Gambarelli, A. Tkachuk, et al., Nature Nanotechnol. 2, 39 (2007).

    Article  ADS  Google Scholar 

  11. J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).

    Article  ADS  Google Scholar 

  12. J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, Phys. Rev. A 75, 012304 (2007).

    Article  ADS  Google Scholar 

  13. A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nature Photon. 3, 706 (2009).

    Article  ADS  Google Scholar 

  14. R. A. Akhmedzhanov, A. A. Bondartsev, L. A. Gushchin, and I. V. Zelensky, JETP Lett. 94, 544 (2011).

    Article  ADS  Google Scholar 

  15. I. Roos and K. Mølmer, Phys. Rev. A 69, 022321 (2004).

    Article  ADS  Google Scholar 

  16. O. Guillot-Noél, Ph. Goldner, F. Beaudoux, et al., Phys. Rev. B 79, 155119 (2009).

    Article  ADS  Google Scholar 

  17. D. S. Chao and J. Zhi, Chin. Sci. Bull. 52, 2161 (2007).

    Article  Google Scholar 

  18. L. Rippe, M. Nilsson, S. Kröll, et al., Phys. Rev. A 71, 062328 (2005).

    Article  ADS  Google Scholar 

  19. T. Kushida and A. H. Silver, J. Phys. Chem. Solids 26, 1045 (1965).

    Article  ADS  Google Scholar 

  20. R. M. Shelby, R. M. Macfarlane, and C. S. Yannoni, Phys. Rev. B 21, 5004 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Akhmedzhanov.

Additional information

Original Russian Text © R.A. Akhmedzhanov, A.A. Bondartsev, L.A. Gushchin, I.V. Zelensky, A.G. Litvak, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 12, pp. 945–950.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmedzhanov, R.A., Bondartsev, A.A., Gushchin, L.A. et al. Qubits based on spectrally selected groups of Pr3+ ions in a LaF3 crystal. Jetp Lett. 94, 863–867 (2012). https://doi.org/10.1134/S0021364011240027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011240027

Keywords

Navigation