Skip to main content
Log in

Analysis of the nature of the peak structure of Hubbard subbands using the quantum Monte Carlo method

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It has been shown that the description of the details of the electronic spectra obtained by the combination of the dynamical mean field theory, quantum Monte Carlo methods, and the maximum entropy method can be significantly improved by changing the last method to optimal regularization of the analytic continuation of the Green’s function to the real frequency axis. Starting with the quantum Monte Carlo data, this method has reconstructed peaks in the structure of Hubbard subbands with a maximum error of 0.001 to 0.01. Owing to the universality of the quantum Monte Carlo method, by varying hybridization, it is possible to determine the features of the hybridized function that are responsible for the formation of the structure of Hubbard subbands. It has been shown that there is no direct relation between the peak structure of subbands and the central Kondo peak. The result indicates the charge nature of resonances responsible for the formation of the peak structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Gull, A. J. Millis, A. I. Lichtenstein, et al., Rev. Mod. Phys. 83, 349 (2011).

    Article  ADS  Google Scholar 

  3. G. Kotliar, S. Y. Savrasov, K. Haule, et al., Rev. Mod. Phys. 78, 865 (2006).

    Article  ADS  Google Scholar 

  4. X. Y. Zhang, M. J. Rozenberg, and G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993).

    Article  ADS  Google Scholar 

  5. M. Karski, C. Raas, and G. S. Uhrig, Phys. Rev. B 72, 113110 (2005).

    Article  ADS  Google Scholar 

  6. M. Karski, C. Raas, and G. S. Uhrig, Phys. Rev. B 77, 075116 (2008).

    Article  ADS  Google Scholar 

  7. M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems, 3rd ed. (Nauka, Moscow, 1981; translation of the 1st ed.: Halsted, New York, 1977).

    Google Scholar 

  9. M. Ferrero and O. Parcollet, in preparation.

  10. A. F. Albuquerque, F. Alet, P. Corboz, et al., J. Magn. Magn. Mater. 310, 1187 (2007).

    Article  ADS  Google Scholar 

  11. B. Bauer, L. D. Carr, H. G. Evertz, et al., J. Stat. Mech. 2011, P05001 (2011).

    Article  Google Scholar 

  12. P. Werner, A. Comanac, L. de’Medici, et al., Phys. Rev. Lett. 97, 076405 (2006).

    Article  ADS  Google Scholar 

  13. L. Boehnke, H. Hafermann, M. Ferrero, et al., Phys. Rev. B 84, 075145 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.S. Krivenko, A.N. Rubtsov, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 10, pp. 832–837.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivenko, I.S., Rubtsov, A.N. Analysis of the nature of the peak structure of Hubbard subbands using the quantum Monte Carlo method. Jetp Lett. 94, 768–773 (2012). https://doi.org/10.1134/S0021364011220073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011220073

Keywords

Navigation