Skip to main content
Log in

Ginzburg-landau slopes of the anisotropic upper critical magnetic field and band parameters in the superconductor (TMTSF)2ClO4

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We theoretically determine the Ginzburg-Landau slopes of the anisotropic upper critical magnetic field in a quasi-one-dimensional superconductor and correct the previous works on this issue. By using the experimentally measured values of the Ginzburg-Landau slopes in the superconductor (TMTSF)ClO4, we determine band parameters of its electron spectrum. Our main result is that the so-called quantum dimensional crossover has to happen in this material in magnetic fields, H = 3–8 T, which are much lower than the previously assumed. We discuss how this fact influences metallic and superconducting properties of the (TMTSF)2ClO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Chaikin, M.-Y. Choi, J. F. Kwak, et al., Phys. Rev. Lett. 51, 2333 (1983).

    Article  ADS  Google Scholar 

  2. M. Ribault, D. Jerome, J. Tuchendler, et al., J. Phys. (Paris) Lett. 44, L–953 (1983).

    Google Scholar 

  3. The Physics of Organic Superconductors and Conductors, Ed. by A. G. Lebed (Springer, Berlin, 2008).

    Google Scholar 

  4. T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer, Berlin, 1998).

    Book  Google Scholar 

  5. L. P. Gor’kov and A. G. Lebed, J. Phys. (Paris) Lett. 45, L–433 (1984).

    Google Scholar 

  6. M. Heritier, G. Montambaux, and P. Lederer, J. Phys. (Paris) Lett. 45, L–943 (1984).

    Google Scholar 

  7. A. G. Lebed, Sov. Phys. JETP 62, 595 (1985).

    Google Scholar 

  8. A. Virosztek, L. Cheng, and K. Maki, Phys. Rev. B 34, 3371 (1986).

    Article  ADS  Google Scholar 

  9. D. Poilblanc, G. Montambaux, M. Heritier, and P. Lederer, Phys. Rev. Lett. 58, 270 (1987).

    Article  ADS  Google Scholar 

  10. V. M. Yakovenko, Phys. Rev. B 43, 11353 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. G. Lebed, Physica B 405, S106 (2010).

    Article  ADS  Google Scholar 

  12. A. G. Lebed, N. N. Bagmet, and M. J. Naughton, Phys. Rev. Lett. 93, 157006 (2004).

    Article  ADS  Google Scholar 

  13. P. Dhakal, H. Yoshino, J. Il Oh, et al., Phys. Rev. Lett. 105, 067201 (2010).

    Article  ADS  Google Scholar 

  14. A. G. Lebed and M. J. Naughton, Phys. Rev. Lett. 91, 187003 (2003).

    Article  ADS  Google Scholar 

  15. A. G. Lebed, H.-I. Ha, and M. J. Naughton, Phys. Rev. B 71, 132504 (2005).

    Article  ADS  Google Scholar 

  16. A. G. Lebed, JETP Lett. 44, 114 (1986).

    ADS  Google Scholar 

  17. N. Dupuis, G. Montambaux, and C. A. R. Sa de Melo, Phys. Rev. Lett. 70, 2613 (1993).

    Article  ADS  Google Scholar 

  18. A. G. Lebed and K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998).

    Article  ADS  Google Scholar 

  19. A. G. Lebed, Phys. Rev. Lett. 95, 247003 (2005).

    Article  ADS  Google Scholar 

  20. As shown in [15], the so-called anion gap [3, 4] in the electron spectrum of (TMTSF)2ClO4 is much less than the parameter tb. Therefore, we disregard the anion gap in the electron spectrum (1).

  21. A. G. Lebed, Phys. Rev. Lett. 107, 087004 (2011).

    Article  ADS  Google Scholar 

  22. S. Yonezawa, S. Kusaba, Y. Maeno, et al., Phys. Rev. Lett. 100, 117002 (2008).

    Article  ADS  Google Scholar 

  23. A. G. Lebed, Phys. Rev. B 59, R721 (1999).

    Article  ADS  Google Scholar 

  24. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1994).

    MATH  Google Scholar 

  25. A. G. Lebed and S. Wu, Phys. Rev. B 82, 172504 (2010).

    Article  ADS  Google Scholar 

  26. L. P. Gor’kov and D. Jerome, J. Phys. (Paris) Lett. 46, L643 (1985).

    Google Scholar 

  27. L. P. Gor’kov and T. K. Melik-Barkhudarov, Sov. Phys. JETP 18, 1031 (1964).

    Google Scholar 

  28. S. Yonezawa, S. Kusaba, Y. Maeno, et al., Phys. Rev. Lett. 100, 117002 (2008).

    Article  ADS  Google Scholar 

  29. S. Yonezawa, S. Kusaba, Y. Maeno, et al., J. Phys.: Conf. Ser. 150, 052289 (2009).

    Article  ADS  Google Scholar 

  30. S. Yonezawa, Y. Maeno, K. Bechgaard, and D. Jerome, preprint (2010).

  31. C. Bourbonnais and A. Sedeki, Phys. Rev. B 80, 085105 (2009).

    Article  ADS  Google Scholar 

  32. N. Belmechri, G. Abramovici, and M. Heritier, Europhys. Lett. 82, 47009 (2008).

    Article  ADS  Google Scholar 

  33. H. Shimahara, Phys. Rev. B 61, R14936 (2000).

    Article  ADS  Google Scholar 

  34. A. G. Lebed, JETP Lett. 94, 382 (2011).

    Article  ADS  Google Scholar 

  35. L. P. Gor’kov, Sov. Phys. JETP 10, 593 (1960).

    MathSciNet  Google Scholar 

  36. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).

    Article  ADS  Google Scholar 

  37. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962); B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).

    Article  ADS  Google Scholar 

  38. M. J. Naughton, I. J. Lee, P. M. Chaikin, and G. M. Danner, Synth. Metals 85, 1481 (1997).

    Article  Google Scholar 

  39. S. Wu and A. G. Lebed, Phys. Rev. B 82, 075123 (2010).

    Article  ADS  Google Scholar 

  40. P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebed, A.G. Ginzburg-landau slopes of the anisotropic upper critical magnetic field and band parameters in the superconductor (TMTSF)2ClO4 . Jetp Lett. 94, 689–692 (2012). https://doi.org/10.1134/S0021364011210089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011210089

Keywords

Navigation