Skip to main content
Log in

Superluminal neutrino and spontaneous breaking of Lorentz invariance

  • Astrophysics and Cosmology
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Generally speaking, the existence of a superluminal neutrino can be attributed either to re-entrant Lorentz violation at ultralow energy from intrinsic Lorentz violation at ultrahigh energy or to spontaneous breaking of fundamental Lorentz invariance (possibly by the formation of a fermionic condensate). Re-entrant Lorentz violation in the neutrino sector has been discussed elsewhere. Here, the focus is on mechanisms of spontaneous symmetry breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Adam et al. (OPERA Collab.), “Measurement of the Neutrino Velocity with the OPERA Detector in the CNGS Beam,” arXiv:1109.4897v1.

  2. C. R. Contaldi, “The OPERA Neutrino Velocity Result and the Synchronisation of Clocks,” arXiv:1109.6160.

  3. R. Alicki, “A Possible Statistical Mechanism of Anomalous Neutrino Velocity in OPERA Experiment?,” arXiv:1109.5727.

  4. A. G. Cohen and S. L. Glashow, “New Constraints on Neutrino Velocities,” arXiv:1109.6562.

  5. S. Chadha and H. B. Nielsen, Nucl. Phys. B 217, 125 (1983).

    Article  ADS  Google Scholar 

  6. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  7. J. D. Bjorken, Ann. Phys. 24, 174 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Jenkins, Phys. Rev. D 69, 105007 (2004); arXiv:hepth/0311127.

    Article  ADS  Google Scholar 

  9. F. R. Klinkhamer and G. E. Volovik, Int. J. Mod. Phys. A 20, 2795 (2005); arXiv:hep-th/0403037.

    Article  MATH  ADS  Google Scholar 

  10. G. E. Volovik, Lect. Notes Phys. 718, 31 (2007); arXiv:cond-mat/0601372.

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Jacobson, PoS QG-PH, 020 (2007); arXiv:0801.1547.

  12. K. Akama, Prog. Theor. Phys. 60, 1900 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. G. E. Volovik, Physica B 162, 222 (1990).

    Article  ADS  Google Scholar 

  14. C. Wetterich, Phys. Rev. D 70, 105004 (2004); arXiv:hep-th/0307145.

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Diakonov, “Towards Lattice-Regularized Quantum Gravity,” arXiv:1109.0091.

  16. T. T. Heikkilá and G. E. Volovik, JETP Lett. 92, 681 (2010); arXiv:1010.0393.

    Article  ADS  Google Scholar 

  17. F. R. Klinkhamer, “Superluminal Muon-Neutrino Velocity from a Fermi-Point-Splitting Model of Lorentz Violation,” arXiv:1109.5671.

  18. S. R. Coleman and S. L. Glashow, Phys. Lett. B 405, 249 (1997); arXiv:hep-ph/9703240; S. R. Coleman and S. L. Glashow, Phys. Rev. D 59, 116008 (1999); arXiv:hep-ph/9812418.

    Article  ADS  Google Scholar 

  19. G. Dvali and A. Vikman, “Price for Environmental Neutrino-Superluminality,” arXiv:1109.5685.

  20. A. Kehagias, “Relativistic Superluminal Neutrinos,” arXiv:1109.6312.

  21. C. Pfeifer and M. N. R. Wohlfarth, “Beyond the Speed of Light on Finsler Spacetimes,” arXiv:1109.6005.

  22. O. Gagnon and G. D. Moore, Phys. Rev. D 70, 065002 (2004); arXiv:hep-ph/0404196.

    Article  ADS  Google Scholar 

  23. S. Bernadotte and F. R. Klinkhamer, Phys. Rev. D 75, 024028 (2007); arXiv:hep-ph/0610216.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Klinkhamer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinkhamer, F.R., Volovik, G.E. Superluminal neutrino and spontaneous breaking of Lorentz invariance. Jetp Lett. 94, 673–675 (2012). https://doi.org/10.1134/S0021364011210077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011210077

Keywords

Navigation