Skip to main content
Log in

Negative ions Ar, Kr, and Xe in superfluid helium

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The catalogue of negative ions in superfluid helium has been extended using the example of Ar, Kr, and Xe. Such objects cannot exist in vacuum, since the polarization attraction of an electron to the inert A atom is insufficient for the formation of the bound state A. However, these objects exist in helium as stable or metastable with a very long lifetime. The effect is due to the electron localization in liquid helium. If a mixture of excited A* atoms and electrons is prepared in the gas phase above liquid helium, the reaction A* + e = A* becomes possible for all atoms of the periodic table. Such charges can be immersed into liquid helium by the electric field. In this case, the radiative decay A* = A + e allowed in vacuum can be forbidden in liquid. This leads to the formation of the new unique objects A, which can exist in liquid helium but are absent in nature. The size of such charged formations has been determined and is close the radius of a usual electron bubble in helium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Ihas and T. M. Sanders, Phys. Rev. Lett. 27, 383 (1971).

    Article  ADS  Google Scholar 

  2. H. J. Maris, J. Phys. Soc. Jpn. 77, 111008 (2008).

    Article  ADS  Google Scholar 

  3. F. Ancilotto, M. Barranco, and M. Pi, Phys. Rev. B 80, 174504 (2009).

    Article  ADS  Google Scholar 

  4. V. L. Eden and P. V. E. McClintock, Phys. Lett. A 102, 197 (1984).

    Article  ADS  Google Scholar 

  5. C. D. H. Williams, P. C. Hendry, and P. V. E. McClintock, Jpn. J. Appl. Phys. 26(3), 105 (1987).

    Google Scholar 

  6. G. G. Ihas, PhD Thesis (Univ. of Michigan, Ann Arbon, Michigan, 1971).

  7. V. L. Eden, M. Phil. Thesis (Univ. of Lancaster, Lancaster, United Kingdom, 1986).

    Google Scholar 

  8. T. M. Sanders and G. G. Ihas, Phys. Rev. Lett. 59, 1722 (1987).

    Article  ADS  Google Scholar 

  9. C. D. H. Williams, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. Lett. 60, 865 (1988); T. M. Sanders and G. G. Ihas, Phys. Rev. Lett. 60, 866 (1988).

    Article  ADS  Google Scholar 

  10. V. P. Shevelko, Atoms and Their Spectroscopic Properties (Springer, Berlin, 1997).

    Google Scholar 

  11. A. G. Khrapak, JETP Lett. 86, 252 (2007).

    Article  ADS  Google Scholar 

  12. K. F. Volykhin, A. G. Khrapak, and V. F. Shmidt, J. Exp. Theor. Phys. 81, 901 (1995).

    ADS  Google Scholar 

  13. P. D. Grigoriev and A. M. Dyugaev, J. Exp. Theor. Phys. 88, 325 (1999).

    Article  ADS  Google Scholar 

  14. R. A. Ferrel, Phys. Rev. 108, 167 (1957).

    Article  ADS  Google Scholar 

  15. B. M. Smirnov, Phys. Usp. 45, 1251 (2002).

    Article  ADS  Google Scholar 

  16. A. M. Dyugaev, P. D. Grigoriev, and E. V. Lebedeva, JETP Lett. 91, 303 (2010).

    Article  ADS  Google Scholar 

  17. A. Dalgarno, Adv. Chem. Phys. 12, 143 (1967).

    Article  Google Scholar 

  18. E. V. Lebedeva, A. M. Dyugaev, and P. D. Grigoriev, J. Exp. Theor. Phys. 110, 694 (2010).

    Article  ADS  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  20. F. Dalfovo, R. Mayol, M. Pi, and M. Barranco, Phys. Rev. Lett. 85, 1028 (2000).

    Article  ADS  Google Scholar 

  21. H. A. Kramers, Physica 7, 284 (1940).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. M. Farnik and J. P. Toennies, J. Chem. Phys. 118, 4176 (2003).

    Article  ADS  Google Scholar 

  23. G. H. Lee, S. T. Arnold, J. G. Eaton, et al., Z. Phys. D: At. Mol. Clust. 20, 9 (1991).

    Article  ADS  Google Scholar 

  24. L. Spruch, T. F. O’Malley, and L. Rosenberg, Phys. Rev. Lett. 5, 375 (1960); T. F. O’Malley, L. Spruch, and L. Rosenberg, J. Math. Phys. 2, 491 (1961).

    Article  ADS  Google Scholar 

  25. T. Arai, H. Yayama, and K. Kono, Low Temp. Phys. 34, 397 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Lebedeva.

Additional information

Original Russian Text © A.M. Dyugaev, P.D. Grigor’ev, E.V. Lebedeva, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 9, pp. 774–778.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyugaev, A.M., Grigor’ev, P.D. & Lebedeva, E.V. Negative ions Ar, Kr, and Xe in superfluid helium. Jetp Lett. 94, 714–718 (2012). https://doi.org/10.1134/S0021364011210041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011210041

Keywords

Navigation