Skip to main content
Log in

Low-temperature collapse of the Fermi surface and phase transitions in correlated Fermi systems

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A topological crossover, associated with the collapse of the Fermi surface in strongly correlated Fermi systems, is examined. It is demonstrated that in these systems, the temperature domain where standard Ferrai liquid results hold dramatically narrows, because the Landau regime is replaced by a classical one. The impact of the collapse of the Fermi surface on pairing correlations is analyzed. In the domain of the Lifshitz phase diagram where the Fermi surface collapses, splitting of the BCS superconducting phase transition into two different ones of the same symmetry is shown to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960.

    Google Scholar 

  2. N. Doiron-Leyrand et al., Nature 447, 545 (2007).

    Article  ADS  Google Scholar 

  3. D. LeBoeuf et al., Nature 450, 533 (2007).

    Article  ADS  Google Scholar 

  4. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B 78, 075120 (2008).

    Article  ADS  Google Scholar 

  5. M. R. Norman, J. Lin, and A. J. Millis, Phys. Rev. B 81, 180513 (2010).

    Article  ADS  Google Scholar 

  6. G. E. Volovik, JETP Lett. 93, 66 (2011).

    Article  ADS  Google Scholar 

  7. N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B 83, 220503(R) (2011).

    Article  ADS  Google Scholar 

  8. N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, JETP Lett. 94, 233 (2011).

    Article  ADS  Google Scholar 

  9. N. B. Kopnin, Pis’ma Zh. Eksp. Teor. Fiz. 94, 81 (2011); arXiv:1105.1883.

    Google Scholar 

  10. D. LeBoeuf et al., Phys. Rev. B 83, 054506 (2011).

    Article  ADS  Google Scholar 

  11. V. R. Shaginyan, A. Z. Mzezane, and K. G. Popov, Phys. Rev. B 84, 060401(R) (2011).

    Article  ADS  Google Scholar 

  12. S. S. Pankratov, M. V. Zverev, and M. Baldo, JETP Lett. 93, 591 (2011).

    Article  ADS  Google Scholar 

  13. V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 94, 73 (2011).

    Article  ADS  Google Scholar 

  14. A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504 (2011).

    Article  ADS  Google Scholar 

  15. P. M. R. Brydon, A. P. Schnyder, and C. Timm, Phys. Rev. B 84, 020501 (2011).

    Article  ADS  Google Scholar 

  16. J. W. Clark, V. A. Khodel, and M. V. Zverev, Phys. Rev. B 71, 012401 (2005).

    Article  ADS  Google Scholar 

  17. V. A. Khodel, M. V. Zverev, and V. M. Yakovenko, Phys. Rev. Lett. 95, 236402 (2005).

    Article  ADS  Google Scholar 

  18. G. E. Volovik, Springer Lecture Notes in Physics 718, 31 (2007); arXiv:0601372.

    Article  ADS  MathSciNet  Google Scholar 

  19. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  20. G. E. Volovik, JETP Lett. 53, 222 (1991).

    ADS  Google Scholar 

  21. P. Nozières, J. Phys. I France 2, 443 (1992).

    Article  Google Scholar 

  22. M. V. Zverev and M. Baldo, J. Exp. Theor. Phys. 87, 1129 (1998); J. Phys.: Condens. Matter 11, 2059 (1999).

    Article  ADS  Google Scholar 

  23. S. A. Artamonov, V. R. Shaginyan, and Yu. G. Pogorelov, JETP Lett. 68, 942 (1998).

    Article  ADS  Google Scholar 

  24. V. R. Shaginyan et al., Phys. Rep. 492, 31 (2010).

    Article  ADS  Google Scholar 

  25. H. v. Löhneysen et al., Rev. Mod. Phys. 79, 1015 (2007).

    Article  ADS  Google Scholar 

  26. P. Gegenwart, Q. Si, and F. Steglich, Nature Phys. 4, 186 (2008).

    Article  ADS  Google Scholar 

  27. E. Krotscheck and J. Springer, J. Low Temp. Phys. 132, 281 (2003).

    Article  Google Scholar 

  28. D. Pines and P. Nozières, Theory of Quantum Liquids (W. A. Benjamin, New York, Amsterdam, 1966), Vol. 1.

    Google Scholar 

  29. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967).

    Google Scholar 

  30. C. Klingner et al., Phys. Rev. B 83, 144405 (2011).

    Article  ADS  Google Scholar 

  31. D. M. Eagles, Phys. Rev. 186, 456 (1969).

    Article  ADS  Google Scholar 

  32. A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, Ed. by A. Pekalski and J. Przystawa (Spriger, Berlin, 1980).

    Google Scholar 

  33. P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 980 (1985).

    Article  Google Scholar 

  34. M. Schmidt, G. Röpke, and H. Schulz, Ann. Phys. (N.Y.) 202, 57 (1990).

    Article  ADS  Google Scholar 

  35. M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C 52, 975 (1995).

    Article  ADS  Google Scholar 

  36. A. S. Alexandrov and N. Mott, Polarons and Bipolarons (World Scientific, Singapore, 1996).

    Google Scholar 

  37. A. S. Alexandrov, Phys. Rev. Lett. 96, 147003 (2006); J. Phys. Condens. Matter 22, 426004 (2010).

    Article  ADS  Google Scholar 

  38. R.-H. He et al., Science 331, 1579 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khodel.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodel, V.A. Low-temperature collapse of the Fermi surface and phase transitions in correlated Fermi systems. Jetp Lett. 94, 653–659 (2011). https://doi.org/10.1134/S0021364011200069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011200069

Keywords

Navigation