JETP Letters

, Volume 94, Issue 5, pp 356–361 | Cite as

Nonplanar double layers in plasmas with opposite polarity dust

Plasma, Hydro- and Gas Dynamics

Abstract

Nonplanar (cylindrical and spherical) double layers (DLs) in a four-component dusty plasma (composed of inertial positively and negatively charged dust, Boltzmann electrons and ions) are studied by employing the reductive perturbation method. The modified Gardner equation describing the nonlinear propagation of the dust-acoustic (DA) waves is derived, and its nonplanar double layer solutions are numerically analyzed. The parametric regimes for the existence of the DLs, which are found to be associated with positive potential only, are obtained. The basic features of nonplanar DA DLs, which are found to be different from planar ones, are also identified. The implications of our results to different space and laboratory dusty plasma situations, where opposite polarity dust are observed, are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    F. Verheest, Waves in Dusty Plasmas (Kluwer Academic Publishers, Dordrecht, 2000).CrossRefGoogle Scholar
  3. 3.
    P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (Inst. of Physics, Bristol, 2002).CrossRefGoogle Scholar
  4. 4.
    A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    C. Thompson, A. Barkan, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 4, 2331 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    R. L. Merlino and J. Goree, Phys. Today 57(7), 32 (2004).CrossRefGoogle Scholar
  7. 7.
    P. Bandyopadhyay, G. Prasad, A. Sen, and P. K. Kaw, Phys. Rev. Lett. 101, 065006 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    J. Heinrich, S. H. Kim, and R. L. Merlino, Phys. Rev. Lett. 103, 115002 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    R. K. Varma, P. K. Shukla, and V. Krishan, Phys. Rev. E 47, 3612 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    F. Melandsø, Phys. Plasmas 3, 3890 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    P. K. Kaw and A. Sen, Phys. Plasmas 5, 3552 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 702 (1996).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    A. A. Mamun, Astrophys. Space Sci. 268, 443 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    P. K. Shukla and A. A. Mamun, IEEE Trans. Plasma Sci. 29, 221 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Mamun and P. K. Shukla, Phys. Lett. A 290, 173 (2001).ADSMATHCrossRefGoogle Scholar
  16. 16.
    P. K. Shukla and A. A. Mamun, New J. Phys. 5, 17 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    B. Eliasson and P. K. Shukla, Phys. Rev. E 69, 067401 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Mamun, B. Eliason, and P. K. Shukla, Phys. Lett. A 332, 412 (2004).ADSMATHCrossRefGoogle Scholar
  19. 19.
    F. Verheest and S. R. Pillay, Phys. Plasmas 15, 013703 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Mamun and R. A. Cairns, Phys. Rev. E 79, 055401(R) (2009).ADSCrossRefGoogle Scholar
  21. 21.
    J. X. Ma and J. Liu, Phys. Plasmas 4, 253 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    S. K. El-Labany, W. F. El-Taibany, A. A. Mamun, and W. M. Moslem, Phys. Plasmas 11, 926 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    W. M. Moslem, Chaos, Solitons & Fractals 23, 939 (2005).ADSMATHGoogle Scholar
  24. 24.
    A. A. Mamun and P. K. Shukla, Europhys. Lett. 87, 25001 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Mamun and P. K. Shukla, New J. Phys. 11, 103022 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    K. S. Ashrafi, A. A. Mamun, and P. K. Shukla, Europhys. Lett. 92, 15004 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    H. Alinejad and A. A. Mamun, Phys. Plasmas 17, 123706 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    M. Tribeche and A. Merriche, Phys. Plasmas 18, 034502 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    M. Rosenberg and D. A. Mendis, IEEE Trans. Plasma Sci. 23, 177 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    V. E. Fortov et al., J. Exp. Theor. Phys. 87, 1087 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    M. Rosenberg, D. A. Mendis, and D. P. Sheehan, IEEE Trans. Plasma Sci. 27, 239 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    V. W. Chow, D. A. Mendis, and M. Rosenberg, J. Geophys. Res. 98, 19065 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    O. Havnes et al., J. Geophys. Res. 101, 10839 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    T. A. Ellis and J. S. Neff, Icarus 91, 280 (1991).ADSCrossRefGoogle Scholar
  35. 35.
    M. Horányi, Ann. Rev. Astron. Astrophys. 34, 383 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    M. Horányi, G. E. Morfill, and E. Grün, Nature 363, 144 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    P. K. Shukla and M. Rosenberg, Phys. Scripta 73, 196 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    D. J. Lacks and A. Levandovsky, J. Electrostatics 65, 107 (2007).CrossRefGoogle Scholar
  39. 39.
    W. M. Farrell, P. H. Smith, G. T. Delory, et al., J. Geophys. Res. 109, E03004 (2004).CrossRefGoogle Scholar
  40. 40.
    J. Merrison, J. Jensen, K. Kinch, et al., Planet. Space Sci. 52, 279 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    C. D. Stow, Rep. Prog. Phys. 32, 1 (1969).ADSCrossRefGoogle Scholar
  42. 42.
    H. Zhao, G. S. P. Castle, and I. I. Inculet, J. Electrostatics 55, 261 (2002).CrossRefGoogle Scholar
  43. 43.
    H. Zhao, G. S. P. Castle, I. I. Inculet, and A. G. Bailey, IEEE Trans. Ind. Appl. 39, 612 (2003).CrossRefGoogle Scholar
  44. 44.
    S. Trigwell, N. Grable, C. U. Yurreri, et al., IEEE Trans. Ind. Appl. 39, 79 (2003).CrossRefGoogle Scholar
  45. 45.
    F. S. Ali, M. A. Ali, R. A. Ali, and I. I. Inculet, J. Electrostatics 45, 139 (1998).CrossRefGoogle Scholar
  46. 46.
    D. A. Mendis and M. Rosenberg, Ann. Rev. Astron. Astrophys. 32, 419 (1994).ADSCrossRefGoogle Scholar
  47. 47.
    P. H. Sakanaka and P. K. Shukla, Phys. Scripta T 84, 181 (2000).ADSCrossRefGoogle Scholar
  48. 48.
    N. D’Angelo, Planet. Space Sci. 49, 1251 (2001).ADSCrossRefGoogle Scholar
  49. 49.
    A. A. Mamun and P. K. Shukla, Geophys. Res. Lett. 29, 1870 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    A. A. Mamun, Phys. Rev. E 77, 026406 (2008).ADSCrossRefGoogle Scholar
  51. 51.
    A. A. Mamun, Phys. Lett. A 372, 686 (2008).ADSMATHCrossRefGoogle Scholar
  52. 52.
    F. Verheest, Phys. Plasmas 16, 013704 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).ADSCrossRefGoogle Scholar
  54. 54.
    S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).ADSCrossRefGoogle Scholar
  55. 55.
    V. I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon, Oxford, 1975).Google Scholar
  56. 56.
    R. Bharuthram and P. K. Shukla, Planet. Space Sci. 40, 465 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Department of PhysicsJahangirnagar UniversitySavar, DhakaBangladesh

Personalised recommendations