Skip to main content
Log in

Experimental evidence of the ferroelectric nature of the λ-point transition in liquid water

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We studied the dielectric properties of nano-sized liquid water samples confined in polymerized silicates MCM-41 characterized by pore sizes 3–10 nm. Freezing temperature suppression in nanopores helps keep the water samples in liquid form at temperatures well below 0°C and thus effectively study the properties of supercooled liquid water. We report the first direct measurements of the dielectric constant by the dielectric spectroscopy method and demonstrate very clear signatures of the second-order phase transition of ferroelectric nature at temperatures next to the λ-point in the supercooled bulk water in full agreement with the recently developed model of the polar liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).

    Article  ADS  Google Scholar 

  2. X. Su, L. Lianos, Y. Shen, and G. Somorjai, Phys. Rev. Lett. 80, 1533 (1998).

    Article  ADS  Google Scholar 

  3. M. Dresser, D. Doering, J. Rowland, et al., J. Phys. Chem. B 102, 9203 (1998).

    Article  Google Scholar 

  4. S. Singer, J. Kuo, T. Hirsch, et al., Phys. Rev. Lett. 94, 135701 (2005).

    Article  ADS  Google Scholar 

  5. S. Jähnert, F. Chávez, G. Schaumann, et al., Phys. Chem. Chem. Phys. 10, 6039 (2008).

    Article  Google Scholar 

  6. K. Morishige and K. Kawano, J. Chem. Phys. 110, 4867 (1999).

    Article  ADS  Google Scholar 

  7. S. Jackson and R. Whitworth, J. Phys. Chem. B 101, 6177 (1997).

    Article  Google Scholar 

  8. C. Cramer and D. Truhlar, Chem. Rev. 99, 2161 (1999).

    Article  Google Scholar 

  9. C. Angell, J. Shuppert, and J. Tucker, J. Phys. Chem. 77, 3092 (1973).

    Article  Google Scholar 

  10. I. Hodge and C. Angell, J. Chem. Phys. 68, 1363 (1978).

    Article  ADS  Google Scholar 

  11. R. Speedy and C. Angell, J. Chem. Phys. 65, 851 (1976).

    Article  ADS  Google Scholar 

  12. P. Debye, Polar Molecules (Chemical Catalog Co., New York, 1929).

    MATH  Google Scholar 

  13. C. Angell, Ann. Rev. Phys. Chem. 34, 593 (1983).

    Article  ADS  Google Scholar 

  14. F. Stillinger, Phil. Trans. R. Soc. London B: Biol. Sci. 278, 97 (1977).

    Article  ADS  Google Scholar 

  15. D. Wei and G. Patey, Phys. Rev. Lett 68, 2043 (1992).

    Article  ADS  Google Scholar 

  16. I. Ponomareva, I. Naumov, I. Kornev, et al., Phys. Rev. B 72, 140102 (2005).

    Article  ADS  Google Scholar 

  17. J. Weis, J. Chem. Phys. 123, 044503 (2005).

    Article  ADS  Google Scholar 

  18. J. Weis, D. Levesque, and G. Zarragoicoechea, Phys. Rev. Lett. 69, 913 (1992).

    Article  ADS  Google Scholar 

  19. B. Groh and S. Dietrich, Phys. Rev. Lett. 72, 2422 (1994).

    Article  ADS  Google Scholar 

  20. V. Ballenegger and J. Hansen, Mol. Phys. 102, 599 (2004).

    Article  ADS  Google Scholar 

  21. D. Matyushov, Phys. Rev. E 76, 11511 (2007).

    Article  ADS  Google Scholar 

  22. J. Bartke and R. Hentschke, Phys. Rev. E 75, 061503 (2007).

    Article  ADS  Google Scholar 

  23. F. Sciortino, Chem. Phys. 258, 307 (2000).

    Article  ADS  Google Scholar 

  24. J. Bernal and R. Fowler, J. Chem. Phys. 1, 515 (1933).

    Article  ADS  Google Scholar 

  25. J. Pople, Proc. R. Soc. London A: Math. Phys., 163 (1951).

  26. P. Fedichev and L. Menshikov, arXiv:0808.0991 (2008).

  27. P. Fedichev and L. Menshikov, cond-mat/0601129 (2006).

  28. L. Menshikov and P. Fedichev, Russ. J. Phys. Chem. A 85, 906 (2011).

    Article  Google Scholar 

  29. A. Schreiber, I. Ketelsen, and G. Findenegg, Phys. Chem. Chem. Phys. 3, 1185 (2001).

    Article  Google Scholar 

  30. O. Petrov and I. Furó, Prog. Nucl. Magn. Res. Spectrosc. 54, 97 (2009).

    Article  Google Scholar 

  31. F. Mikami, K. Matsuda, H. Kataura, and Y. Maniwa, ACS Nano 3, 1279 (2009).

    Article  Google Scholar 

  32. C. Luo, W. Fa, J. Zhou, et al., Nano Lett. 8, 2607 (2008).

    Article  ADS  Google Scholar 

  33. D. LeBard and D. Matyushov, J. Phys. Chem. B 114, 9246 (2009).

    Article  Google Scholar 

  34. U. Kaatze and Y. Feldman, Meas. Sci. Technol. 17, R17 (2006).

    Article  ADS  Google Scholar 

  35. T. Takamuku, M. Yamagami, H. Wakita, et al., J. Phys. Chem. B 101, 5730 (1997).

    Article  Google Scholar 

  36. D. Steytler and J. Dore, Mol. Phys. 56, 1001 (1985).

    Article  ADS  Google Scholar 

  37. M. Bellissent-Funel, J. Lal, and L. Bosio, J. Chem. Phys. 98, 4246 (1993).

    Article  ADS  Google Scholar 

  38. N. Giovambattista, P. Rossky, and P. Debenedetti, Phys. Rev. E 73, 041604 (2006).

    Article  ADS  Google Scholar 

  39. R. Ramirez, R. Gebauer, M. Mareschal, and D. Borgis, Phys. Rev. E 66, 31206 (2002).

    Article  ADS  Google Scholar 

  40. H. Gong and K. Freed, Phys. Rev. Lett. 102, 57603 (2009).

    Article  ADS  Google Scholar 

  41. P. Koehl, H. Orland, and M. Delarue, Phys. Rev. Lett. 102, 87801 (2009).

    Article  ADS  Google Scholar 

  42. D. Beglov and B. Roux, J. Phys. Chem. B 101, 7821 (1997).

    Article  Google Scholar 

  43. P. Frodl and S. Dietrich, Phys. Rev. A 45, 7330 (1992).

    Article  ADS  Google Scholar 

  44. C. Joce, J. Stahl, M. Shridhar, et al., Bioorg. Med. Chem. Lett. 20, 5411 (2010).

    Article  Google Scholar 

  45. H. Frohlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss (Clarendon, Oxford, 1949).

    Google Scholar 

  46. A. Stogrin, IEEE Trans. Microwave Theory Tech. 19, 733 (1971).

    Article  ADS  Google Scholar 

  47. H. Liebe, G. Hufford, and T. Manabe, Int. J. Infrared Millim. Waves 12, 659 (1991).

    Article  ADS  Google Scholar 

  48. J. Hasted, D. Ritson, and C. Collie, J. Chem. Phys. 16, 1 (1948).

    Article  ADS  Google Scholar 

  49. C. Kresge, M. Leonowicz, W. Roth, et al., Nature 359, 710 (1992).

    Article  ADS  Google Scholar 

  50. G. Bordonskiy and A. Orlov, Russ. J. Condens. Matter Interphase Bound. 13, 5 (2011).

    Google Scholar 

  51. V. Parfenov and S. Kirik, in Proceedings of the 4th Staroverov Readings (Krasnoyarsk, 2009), p. 319.

  52. A. Patashinskii, V. Pokrovskii, and P. J. J. Shepherd, Fluctuation Theory of Phase Transitions (Pergamon, Oxford, 1979).

    Google Scholar 

  53. P. Poole, F. Sciortino, U. Essmann, and H. Stanley, Nature 360, 324 (1992).

    Article  ADS  Google Scholar 

  54. H. Stanley, C. Angell, U. Essmann, et al., Physica A: Stat. Mech. Appl. 205, 122 (1994).

    Article  ADS  Google Scholar 

  55. E. Ponyatovskii, V. Sinitsyn, and T. Pozdnyakova, JETP Lett. 60, 360 (1994).

    ADS  Google Scholar 

  56. F. Mallamace, C. Corsaro, M. Broccio, et al., Proc. Natl. Acad. Sci. 105, 12725 (2008).

    Article  ADS  Google Scholar 

  57. G. Johari, E. Tombari, G. Salvetti, and F. Mallamace, J. Chem. Phys. 130, 126102 (2009).

    Article  ADS  Google Scholar 

  58. B. Webber and J. Dore, J. Phys.: Condens. Matter 16, S5449 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedichev, P.O., Menshikov, L.I., Bordonskiy, G.S. et al. Experimental evidence of the ferroelectric nature of the λ-point transition in liquid water. Jetp Lett. 94, 401–405 (2011). https://doi.org/10.1134/S002136401117005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401117005X

Keywords

Navigation