Skip to main content

Optical properties of nanodiamond suspensions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The optical properties of nanodiamond suspensions have been calculated. The main supposition is that carbon dimers, which in many aspects are analogous to Pandey chains (2 × 1) on the surface of bulk diamond, are formed on the surface of nanodiamonds due to the surface reconstruction. All experimentally observed features of the absorption of nanodiamond suspensions have been explained on the basis of these ideas. Whereas the diamond nucleus does not absorb light in the visible spectral range, dimers on the surface of the diamond core absorb light in the entire range of optical wavelengths. In addition, there are two features at energies close to 1.5 and 5 eV in their absorption spectrum.

This is a preview of subscription content, access via your institution.

References

  1. Nanoscience and Nanotechnologies: Encyclopedia of Life Support Systems, Ed. by V. N. Kharkin, C. Bai, and S. C. Kim (EOLSS Publishers, Oxford, UK, 2009).

    Google Scholar 

  2. M. Baidakova and A. Vul’, J. Phys. D: Appl. Phys. 40,6300 (2007).

    Article  ADS  Google Scholar 

  3. V. L. Kuznetsov, M. N. Aleksandrov, I. V. Zagoruiko, et al., Carbon 29, 665 (1991).

    Article  Google Scholar 

  4. L.-Y. Chang, E. Osawa, and A. S. Barnard, Nanoscale 3, 958 (2011).

    Article  ADS  Google Scholar 

  5. A. Kruger, F. Kataoka, M. Ozawa, et al., Carbon 43,1722 (2005).

    Article  Google Scholar 

  6. A. S. Barnard, J. Mater. Chem. 18, 4038 (2008).

    Article  Google Scholar 

  7. A. S. Barnard and M. Sternberg, J. Mater. Chem. 17,4811 (2007).

    Article  Google Scholar 

  8. E. Osawa, Pure Appl. Chem. 80, 1365 (2008).

    Article  Google Scholar 

  9. A. E. Aleksenskiy, E. D. Eydelman, and A. Ya. Vul’, Nanosci. Nanotechnol. Lett. 3, 68 (2011).

    Article  Google Scholar 

  10. O. A. Williams, J. Hees, C. Dieker, et al., ACS Nano 4, 4824 (2010).

    Article  Google Scholar 

  11. R. Martin, M. Alvaro, J. Herance, et al., ACS Nano 4, 65 (2010); PMID: 20047335.

    Article  Google Scholar 

  12. Nanodiamonds: Applications in Biology and Nanoscale Medicine, Ed. by Dean Ho (Springer, MA, USA, 2010).

    Google Scholar 

  13. O. V. Turova, E. V. Starodubtseva, M. G. Vinogradov, et al., Catal. Commun. 12, 577 (2011).

    Article  Google Scholar 

  14. K. V. Reich and E. D. Eidelman, Eur. Phys. Lett. 85,47007 (2009).

    Article  ADS  Google Scholar 

  15. L. Rondin, G. Dantelle, A. Slablab, et al., Phys. Rev. B 82, 115449 (2010).

    Article  ADS  Google Scholar 

  16. M. V. Hauf, B. Grotz, B. Naydenov, et al., Phys. Rev. B 83, 081304 (2011).

    Article  ADS  Google Scholar 

  17. J.-Y. Raty, G. Galli, C. Bostedt, et al., Phys. Rev. Lett. 90, 037401 (2003).

    Article  ADS  Google Scholar 

  18. J. Y. Raty and G. Galli, J. Electroanal. Chem. 584, 9 (2005).

    Article  Google Scholar 

  19. A. Pentecost, S. Gour, V. Mochalin, et al., ACS Appl. Mater. Interfaces 2, 3289 (2010).

    Article  Google Scholar 

  20. A. Ya. Vul’, E. D. Eydelman, E. Osawa, et al., Diamond Relat. Mater. 16, 2023 (2007).

    Article  ADS  Google Scholar 

  21. R. Graupner, M. Hollering, A. Ziegler, et al., Phys. Rev. B 55, 10841 (1997).

    Article  ADS  Google Scholar 

  22. G. Bussetti, C. Goletti, P. Chiaradia, et al., Eur. Phys. Lett. 79, 57002 (2007).

    Article  ADS  Google Scholar 

  23. A. Scholze, W. G. Schmidt, P. Kackell, et al., Mater. Sci. Eng. B 37, 158 (1996).

    Article  Google Scholar 

  24. M. Marsili, O. Pulci, F. Bechstedt, et al., Phys. Rev. B 78, 205414 (2008).

    Article  ADS  Google Scholar 

  25. K. C. Pandey, Phys. Rev. B 25, 4338 (1982).

    Article  ADS  Google Scholar 

  26. S. M.-M. Dubois, Z. Zanolli, X. Declerck, et al., Eur. Phys. J. B 72, 1 (2009).

    Article  ADS  Google Scholar 

  27. G. D. Mahan, Many-Particle Physics (Plenum, New York, 1993).

    Google Scholar 

  28. E. J. Nicol and J. P. Carbotte, Phys. Rev. B 77, 155409 (2008).

    Article  ADS  Google Scholar 

  29. A. Ya. Vul, E. D. Eydelman, L. V. Sharonova, et al., Diamond Relat. Mater. 20, 279 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Reich.

Additional information

Original Russian Text © K.V. Reich, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 1, pp. 23–27.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reich, K.V. Optical properties of nanodiamond suspensions. Jetp Lett. 94, 22–26 (2011). https://doi.org/10.1134/S0021364011130169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011130169

Keywords

  • JETP Letter
  • Optical Conductivity
  • Diamond Surface
  • Deto Nation Nanodiamond
  • Nanodiamond Particle