Skip to main content
Log in

Metallic glass electronic structure peculiarities revealed by UHV STM/STS

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We present the results of ultrahigh vacuum scanning tunneling microscopy/spectroscopy investigation of metallic glass surface. The topography and electronic structure of Ni63.5Nb36.5 have been studied. A great number of clusters with size about 5–10 nm have been found on constant current scanning tunneling microscopy images. The tunneling spectra of normalized tunneling conductivity revealed the energy pseudogap in the vicinity of Fermi energy. For energy values above 0.1 eV the normalized tunneling conductivity changes linearly with increasing of tunneling bias. The obtained results can be understood within suggested theoretical model based on the interplay of elastic electron scattering on random defects and weak intra-cluster Coulomb interaction. The effects of the finite edges of electron spectrum of each cluster have to be taken into account to explain the experimental data. The tunneling conductivity behavior and peculiarities in current images of individual clusters can also be qualitatively analyzed in the framework of suggested model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Klement, R. H. Willens, and P. Duwez, Nature 187, 869 (1960).

    Article  ADS  Google Scholar 

  2. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  Google Scholar 

  3. W. L. Johnson, MRS Bull. 24, 42 (1999).

    Google Scholar 

  4. J. Li, Z. L. Wang, and T. C. Hufnagel, Phys. Rev. B 65, 144201 (2002).

    Article  ADS  Google Scholar 

  5. S. Ashtekar, G. Scott, J. Lyding, and M. Gruebele, J. Phys. Chem. Lett. 1, 1941 (2010).

    Article  Google Scholar 

  6. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).

    Article  ADS  Google Scholar 

  7. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  ADS  Google Scholar 

  8. D. V. Louzguine-Luzgin and A. Inoue, J. Nanosci. Nanotech. 5, 999 (2005).

    Article  Google Scholar 

  9. E. Rotenberg, W. Theis, K. Horn, and P. Gille, Nature 406, 602 (2000).

    Article  ADS  Google Scholar 

  10. G. F. Syrykh, M. N. Khlopkin, M. G. Zemlyanov, et al., Appl. Phys. A 74, S951 (2002).

    Article  ADS  Google Scholar 

  11. L. Xia, W. H. Li, S. S. Fang, et al., J. Appl. Phys. 99, 026103 (2006).

    Article  ADS  Google Scholar 

  12. D. V. Louzguine and A. Inoue, J. Non-Cryst. Solids 337, 161 (2004).

    Article  ADS  Google Scholar 

  13. I. Beloborodov, A. Lopatin, V. Vinokur, et al., Rev. Mod. Phys. 79, 470 (2007).

    Article  ADS  Google Scholar 

  14. M. Feigel’man and A. Ioselevich, JETP Lett. 81, 227 (2005).

    Google Scholar 

  15. M. Feigel’man, A. Ioselevich, and M. Skvortsov, Phys. Rev. Lett. 93, 136403 (2004).

    Article  ADS  Google Scholar 

  16. A. Finkelstein, Electron Liquid in Disordered Conductors, Soviet Scientific Reviews (Harwood, London, 1990).

    Google Scholar 

  17. B. Altshuler and A. Aronov, Electron-Electron Interaction in Disordered Conductors (North-Holland, Amsterdam, 1985), Vol. 10, p. 1.

    Google Scholar 

  18. B. Altshuler, A. Aronov, and D. Khmel’nitskii, J. Phys. C 15, 7367 (1982).

    Article  ADS  Google Scholar 

  19. B. Altshuler, D. Khmel’nitskii, A. Larkin, et al., Phys. Rev. B 22, 5142 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Oreshkin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oreshkin, A.I., Maslova, N.S., Mantsevich, V.N. et al. Metallic glass electronic structure peculiarities revealed by UHV STM/STS. Jetp Lett. 94, 58–62 (2011). https://doi.org/10.1134/S0021364011130157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011130157

Keywords

Navigation