Skip to main content
Log in

Monotonic growth of interlayer magnetoresistance in strong magnetic field in very anisotropic layered metals

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It is shown that the monotonic part of interlayer electronic conductivity strongly decreases in high magnetic field perpendicular to the conducting layers. Only the coherent interlayer tunneling has been considered, and the obtained result strongly contradicts the standard theory. This effect appears in very anisotropic layered quasi-two-dimensional metals, when the interlayer transfer integral is less than the Landau level separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, 1984).

    Book  Google Scholar 

  2. A. A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).

    Google Scholar 

  3. J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).

    Google Scholar 

  4. M. V. Kartsovník and V. G. Peschansky, Low Temp. Phys. 31, 185 (2005).

    Article  ADS  Google Scholar 

  5. M. V. Kartsovník, Chem. Rev. 104, 5737 (2004).

    Article  Google Scholar 

  6. T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer, Berlin, 1998).

    Book  Google Scholar 

  7. J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors (Springer, Berlin, 1996); J. Singleton, Rep. Prog. Phys. 63, 1111 (2000).

    Google Scholar 

  8. N. E. Hussey, M. Abdel-Jawad, A. Carrington, et al., Nature 425, 814 (2003).

    Article  ADS  Google Scholar 

  9. M. Abdel-Jawad, M. P. Kennett, L. Balicas, et al., Nature Phys. 2, 821 (2006).

    Article  ADS  Google Scholar 

  10. M. Abdel-Jawad, J. G. Analytis, L. Balicas, et al., Phys. Rev. Lett. 99, 107002 (2007).

    Article  ADS  Google Scholar 

  11. M. P. Kennett and R. H. McKenzie, Phys. Rev. B 76, 054515 (2007).

    Article  ADS  Google Scholar 

  12. M. Kuraguchi, E. Ohmichi, T. Osada, and Y. Shiraki, Synth. Met. 133–134, 113 (2003).

    Article  Google Scholar 

  13. K. Yamaji, J. Phys. Soc. Jpn. 58, 1520 (1989).

    Article  ADS  Google Scholar 

  14. R. Yagi, Y. Iye, T. Osada, and S. Kagoshima, J. Phys. Soc. Jpn. 59, 3069 (1990).

    Article  ADS  Google Scholar 

  15. M. V. Kartsovnik, P. D. Grigoriev, W. Biberacher, et al., Phys. Rev. Lett. 89, 126802 (2002).

    Article  ADS  Google Scholar 

  16. P. D. Grigoriev, Phys. Rev. B 67, 144401 (2003).

    Article  ADS  Google Scholar 

  17. P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, et al., Phys. Rev. B 65, 60403(R) (2002).

    Article  ADS  Google Scholar 

  18. F. Zuo, X. Su, P. Zhang, et al., Phys. Rev. B 60, 6296 (1999).

    Article  ADS  Google Scholar 

  19. W. Kang, Y. J. Jo, D. Y. Noh, et al., Phys. Rev. B 80, 155102 (2009).

    Article  ADS  Google Scholar 

  20. J. Hagel, J. Wosnitza, C. Pfleiderer, et al., Phys. Rev. B 68, 104504 (2003).

    Article  ADS  Google Scholar 

  21. J. Wosnitza, J. Low Temp. Phys. 146, 641 (2007).

    Article  ADS  Google Scholar 

  22. C. H. Wang, X. H. Chen, J. L. Luo, et al., Phys. Rev. B 71, 224515 (2005).

    Article  ADS  Google Scholar 

  23. M. V. Kartsovnik, P. D. Grigoriev, W. Biberacher, and N. D. Kushch, Phys. Rev. B 79, 165120 (2009).

    Article  ADS  Google Scholar 

  24. J. Wosnitza, J. Hagel, J. S. Qualls, et al., Phys. Rev. B 65, 180506(R) (2002).

    Article  ADS  Google Scholar 

  25. V. M. Gvozdikov, Phys. Rev. B 76, 235125 (2007).

    Article  ADS  Google Scholar 

  26. U. Lundin and R. H. McKenzie, Phys. Rev. B 68, 081101(R) (2003).

    Article  ADS  Google Scholar 

  27. A. F. Ho and A. J. Schofield, Phys. Rev. B 71, 045101 (2005).

    Article  ADS  Google Scholar 

  28. D. B. Gutman and D. L. Maslov, Phys. Rev. Lett. 99, 196602 (2007); Phys. Rev. B 77, 035115 (2008).

    Article  ADS  Google Scholar 

  29. P. D. Grigoriev, arXiv:1010.0926 (unpublished).

  30. P. Moses and R. H. McKenzie, Phys. Rev. B 60, 7998 (1999).

    Article  ADS  Google Scholar 

  31. T. Champel and V. P. Mineev, Phys. Rev. B 66, 195111 (2002).

    Article  ADS  Google Scholar 

  32. V. M. Gvozdikov, Phys. Rev. B 70, 085113 (2004).

    Article  ADS  Google Scholar 

  33. T. Champel and V. P. Mineev, Phys. Rev. B 74, 247101 (2006).

    Article  ADS  Google Scholar 

  34. Tsunea Ando, J. Phys. Soc. Jpn. 36, 1521 (1974).

    Article  ADS  Google Scholar 

  35. Tsunea Ando, J. Phys. Soc. Jpn. 37, 622 (1974).

    Article  ADS  Google Scholar 

  36. E. M. Baskin, L. N. Magarill, and M. V. Entin, Sov. Phys. JETP 48, 365 (1978).

    ADS  Google Scholar 

  37. E. Brezin, D. I. Gross, and C. Itzykson, Nucl. Phys. B 235, 24 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  38. The Quantum Hall Effect, Ed. by R. Prange and S. M. Girvin (Springer, New York, 1987).

    Google Scholar 

  39. A. M. Dyugaev, P. D. Grigor’ev, and Yu. N. Ovchinnikov, JETP Lett. 78, 148 (2003).

    Article  ADS  Google Scholar 

  40. I. S. Burmistrov and M. A. Skvortsov, JETP Lett. 78, 156 (2003).

    Article  ADS  Google Scholar 

  41. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nauka, Moscow, 1989; Pergamon, Oxford, 1980).

    MATH  Google Scholar 

  42. G. Mahan, Many-Particle Physics, 2nd ed. (Plenum, New York, 1990).

    Book  Google Scholar 

  43. A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. Lett. 76, 1308 (1996); A. S. Alexandrov and A. M. Bratkovsky, Phys. Lett. A 234, 53 (1997); A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. B 63, 033105 (2001); M. Nakano, J. Phys. Soc. Jpn. 66, 910 (1997); M. A. Itskovsky, T. Maniv, and I. D. Vagner, Phys. Rev. B 61, 14616 (2000); Masahiro Nakano, Phys. Rev. B 62, 45 (2000); T. Champel, Phys. Rev. B 65, 153403 (2002); M. A. Itskovsky, Phys. Rev. B 68, 054423 (2003); V. M. Gvozdikov, A. G. M. Jansen, D. A. Pesin, et al., Phys. Rev. B 68, 155107 (2003); V. M. Gvozdikov, A. G. M. Jansen, D. A. Pesin, et al., Phys. Rev. B 70, 245114 (2004); Jean-Yves Fortin, E. Perez, and A. Audouard, Phys. Rev. B 71, 155101 (2005); A. S. Alexandrov and V. V. Kabanov, Phys. Rev. B 76, 233101 (2007); I.O. Thomas, V. V. Kabanov, and A. S. Alexandrov, Phys. Rev. B 77, 075434 (2008).

    Article  ADS  Google Scholar 

  44. P. Grigoriev, JETP 92, 1090 (2001); T. Champel, Phys. Rev. B 64, 054407 (2001).

    Article  ADS  Google Scholar 

  45. N. E. Alekseevskii and V. I. Nizhanovskii, Sov. Phys. JETP 88, 1771 (1985).

    Google Scholar 

  46. J. Wosnitza, S. Wanka, J. Hagel, et al., Phys. Rev. B 61, 7383 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Grigoriev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoriev, P.D. Monotonic growth of interlayer magnetoresistance in strong magnetic field in very anisotropic layered metals. Jetp Lett. 94, 47–52 (2011). https://doi.org/10.1134/S0021364011130078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011130078

Keywords

Navigation