Skip to main content
Log in

Fermi surface reconstruction in strongly correlated Fermi systems as a first-order phase transition

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A quantum phase transition in strongly correlated Fermi systems beyond the topological quantum critical point has been studied using the Fermi liquid approach. The transition takes place between topologically equivalent states with three Fermi surface sheets, but one of them is characterized by a quasiparticle halo in the quasiparticle momentum distribution n(p), and the other one is characterized by a hole pocket. It has been found that the transition between these states is a first-order phase transition for the interaction constant g and temperature T. The phase diagram in the vicinity of this transition has been constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, et al., Phys. Rev. B 66, 073303 (2002).

    Article  ADS  Google Scholar 

  2. V. M. Pudalov, M. E. Gershenson, H. Kojima, et al., Phys. Rev. Lett. 88, 196404 (2002).

    Article  ADS  Google Scholar 

  3. C. Bäuerle, Yu. M. Bun’kov, A. S. Chen, et al., J. Low Temp. 110, 333 (1998).

    Article  Google Scholar 

  4. M. Neumann, J. Nyeki, B. P. Cowan, and J. Saunders, Science 317, 1356 (2007).

    Article  ADS  Google Scholar 

  5. N. Oeschler, S. Yartmann, A. P. Pikul, et al., Physica B 403, 1254 (2008).

    Article  ADS  Google Scholar 

  6. P. Gegenwart, Q. Si, and F. Steglich, Nature Phys. 4, 186 (2008).

    Article  ADS  Google Scholar 

  7. J. A. Hertz, Phys. Rev. B 14, 1165 (1976).

    Article  ADS  Google Scholar 

  8. A. J. Millis, Phys. Rev. B 48, 7183 (1993).

    Article  ADS  Google Scholar 

  9. P. Coleman, C. Pepin, Q. Si, and R. Ramazashvili, J. Phys.: Condens. Matter 13, R723 (2001).

    Article  ADS  Google Scholar 

  10. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  11. G. E. Volovik, JETP Lett. 53, 228 (1991).

    ADS  Google Scholar 

  12. P. Nozières, J. Phys. I France 2, 443 (1992).

    Article  Google Scholar 

  13. V. A. Khodel, JETP Lett. 86, 721 (2007).

    Article  ADS  Google Scholar 

  14. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B 78, 075120 (2008).

    Article  ADS  Google Scholar 

  15. G. E. Volovik, Springer Lect. Notes Phys. 718, 31 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Fröhlich, Phys. Rev. 79, 845 (1950).

    Article  ADS  MATH  Google Scholar 

  17. M. de Llano and J. P. Vary, Phys. Rev. C 19, 1083 (1979).

    Article  ADS  Google Scholar 

  18. M. de Llano, A. Plastino, and J. G. Zabolitsky, Phys. Rev. C 20, 2418 (1979).

    Article  ADS  Google Scholar 

  19. V. C. Aguilera-Navarro, M. de Llano, J. W. Clark, and A. Plastino, Phys. Rev. C 25, 560 (1982).

    Article  ADS  Google Scholar 

  20. M. V. Zverev and M. Baldo, Sov. Phys. JETP 87, 1129 (1998).

    Article  ADS  Google Scholar 

  21. M. V. Zverev and M. Baldo, J. Phys.: Condens. Matter 11, 2059 (1999).

    Article  ADS  Google Scholar 

  22. S. A. Artamonov, V. R. Shaginyan, and Yu. G. Pogorelov, JETP Lett. 68, 942 (1998).

    Article  ADS  Google Scholar 

  23. J. Quintanilla and A. J. Schofield, Phys. Rev. B 74, 115126 (2006).

    Article  ADS  Google Scholar 

  24. T. T. Heikkil, B. Kopnin, and G. E. Volovik, arXiv:1012.0905.

  25. P. M. R. Brydon, A. P. Schnyder, and C. Timm, arXiv:1104.2257.

  26. A. P. Schnyder and S. Ryu, arXiv:1011.1438.

  27. N. B. Kopnin, T. T. Heikkil arXiv:1103.2033.

  28. J. Boronat, J. Casulleras, V. Grau, et al., Phys. Rev. Lett. 91, 085302 (2003).

    Article  ADS  Google Scholar 

  29. V. V. Borisov and M. V. Zverev, JETP Lett. 81, 503 (2005).

    Article  ADS  Google Scholar 

  30. L. D. Landau, Sov. Phys. JETP 3, 920 (1956).

    Google Scholar 

  31. L. D. Landau, Sov. Phys. JETP 8, 70 (1958).

    Google Scholar 

  32. E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).

    Google Scholar 

  33. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statictical Physics (Fizmatlit, Moscow, 1963; Dover, New York, 1975).

    Google Scholar 

  34. C. Klinger, C. Krellner, M. Brando, et al., Phys. Rev. B 83, 14405 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zverev.

Additional information

Original Russian Text © S.S. Pankratov, M.V. Zverev, M. Baldo, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 93, No. 10, pp. 653–659.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankratov, S.S., Zverev, M.V. & Baldo, M. Fermi surface reconstruction in strongly correlated Fermi systems as a first-order phase transition. Jetp Lett. 93, 591–597 (2011). https://doi.org/10.1134/S0021364011100092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011100092

Keywords

Navigation