Skip to main content
Log in

Demonstration of quantum zeno effect in a superconducting phase qubit

  • Quantum Information Science
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Quantum Zeno effect is a significant tool in quantum manipulating and computing. We propose its observation in superconducting phase qubit with two experimentally feasible measurement schemes. The conventional measurement method is used to achieve the proposed pulse and continuous readout of the qubit state, which are analyzed by projection assumption and Monte Carlo wavefunction simulation, respectively. Our scheme gives a direct implementation of quantum Zeno effect in a superconducting phase qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Misra and E. C. G. Sudarshan, J. Math. Phys. Sci. 18, 756 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. J. Cook, Phys. Scr. T 21, 49 (1988).

    Article  ADS  Google Scholar 

  3. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990).

    Article  ADS  Google Scholar 

  4. V. Frerichs and A. Schenzle, Phys. Rev. A 44, 1962 (1991).

    Article  ADS  Google Scholar 

  5. M. C. Fischer, B. Gutiérrez-Medina, and M. G. Raizen, Phys. Rev. Lett. 87, 040402 (2001).

    Article  ADS  Google Scholar 

  6. A. G. Kofman and G. Kurizki, Nature (London) 405, 546 (2000).

    Article  ADS  Google Scholar 

  7. P. Facchi, H. Nakazato, and S. Pascazio, Phys. Rev. Lett. 86, 2699 (2001).

    Article  ADS  Google Scholar 

  8. L. S. Schulman, Phys. Rev. A 57, 1509 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  9. E. W. Streed, J. Mun, M. Boyd, et al., Phys. Rev. Lett. 97, 260402 (2006).

    Article  ADS  Google Scholar 

  10. J. Bernu, S. Deléglise, C. Sayrin, et al., Phys. Rev. Lett. 101, 180402 (2008).

    Article  ADS  Google Scholar 

  11. O. Hosten, M. T. Rakher, J. T. Barreiro, et al., Nature (London) 439, 949 (2006).

    Article  ADS  Google Scholar 

  12. J. D. Franson, B. C. Jacobs, and T. B. Pittman, Phys. Rev. A 70, 062302 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Facchi, S. Tasaki, S. Pascazio, et al., Phys. Rev. A 71, 022302 (2005).

    Article  ADS  Google Scholar 

  14. B. Nagels, L. J. F. Hermans, and P. L. Chapovsky, Phys. Rev. Lett. 79, 3097 (1997).

    Article  ADS  Google Scholar 

  15. A. Barenco, A. E. Berthiaume, and D. Deutsch, SIAM J. Comput. 26, 1541 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. X.-B. Wang, J. Q. You, and F. Nori, Phys. Rev. A 77, 062339 (2008).

    Article  ADS  Google Scholar 

  17. L. Zhou, S. Yang, Y.-X. Liu, et al., Phys. Rev. A 80, 062109 (2009).

    Article  ADS  Google Scholar 

  18. J. Gambetta, A. Blais, M. Boissonneault, et al., Phys. Rev. A 77, 012112 (2008).

    Article  ADS  Google Scholar 

  19. I. Lizuain, J. Casanova, J. J. Garcia-Ripoll, et al., Phys. Rev. A 81, 062131 (2010).

    Article  ADS  Google Scholar 

  20. Y. Matsuzaki and K. Semba, Phys. Rev. B 82, 180518(R) (2010).

    ADS  Google Scholar 

  21. A. Palacios-Laloy, F. Mallet, F. Nguyen, et al., Nature Phys. 6, 442 (2010).

    Article  ADS  Google Scholar 

  22. J. M. Martinis, S. Nam, J. Aumentado, and K. M. Lang, Phys. Rev. B 67, 094510 (2003).

    Article  ADS  Google Scholar 

  23. J. M. Martinis, Quant. Inf. Process 8, 81 (2009).

    Article  Google Scholar 

  24. K. B. Cooper, M. Steffen, R. McDermott, et al., Phys. Rev. Lett. 93, 180401 (2004).

    Article  ADS  Google Scholar 

  25. M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998); R. Blatt and P. Zoller, Eur. J. Phys. 9, 250 (1988).

    Article  ADS  Google Scholar 

  26. K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).

    Article  ADS  Google Scholar 

  27. Y. Yu, S. L. Zhu, G. Sun, et al., Phys. Rev. Lett. 101, 157001 (2008); X. Wen, S. L. Zhu, and Y. Yu, Phys. Rev. B 80, 094507 (2009).

    Article  ADS  Google Scholar 

  28. Y. Makhlin, G. Schon, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  29. S. L. Zhu, Z. D. Wang, and P. Zanardi, Phys. Rev. Lett. 94, 100502 (2005); S. L. Zhu and Z. D. Wang, Phys. Rev. Lett. 91, 187902 (2003).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. -Y. Xue.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.T., Xue, Z.Y. Demonstration of quantum zeno effect in a superconducting phase qubit. Jetp Lett. 93, 349–353 (2011). https://doi.org/10.1134/S0021364011060130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011060130

Keywords

Navigation