Skip to main content
Log in

Landau-pomeranchuk-migdal air showers initiated by ultra-high-energy neutrinos and their detection in a satellite-based experiment

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The ultra-high-energy (UHE) atmospheric showers with strong influence of the Landau-Pomeranchuk-Migdal (LPM) effect (here after LPM showers) are exclusively expected to be produced by UHE neutrinos. Studies on the characteristics of the LPM showers are essentially important to discriminate neutrino shower (which produced by neutrino interaction) from hadronic shower (initiated by primary hadron). We calculate the LPM showers initiated by electrons with energies of 1018 to 1021 eV, using the hybrid method as exactly as possible. Reflecting the change in the air density along the shower trajectories, the variety of the LPM-shower profiles is shown in different cases for their starting points in atmosphere. Through the study of time profiles of air fluorescent photon components from the LPM showers, the detection capability of UHE neutrinos has also been investigated by the satellite-based experiment with a large acceptance, e.g., the TUS experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).

    Article  ADS  Google Scholar 

  2. G. T. Zatsepin and V. A. Kuzumin, Pis’ma Zh. Eksp. Teor. Fiz. 4, 144 (1966) [JETP Lett. 4, 99 (1966)].

    Google Scholar 

  3. A. Cuoco and S. Hannestad, arXiv:0712.1830v2 [astroph].

  4. P. Bhattacharjee, C. T. Hill, and D. N. Schramm, Phys. Rev. Lett. 69, 567 (1992).

    Article  ADS  Google Scholar 

  5. V. Berezinsky and A. Vilenkin, Phys. Rev. Lett. 79, 5202 (1997).

    Article  ADS  Google Scholar 

  6. L. D. Landau and I. J. Pomeranchuk, Dokl. Akad. Nauk SSSR 92, 535 (1953).

    MATH  Google Scholar 

  7. L. D. Landau and I. J. Pomeranchuk, Dokl. Akad. Nauk SSSR 93, 735 (1953).

    Google Scholar 

  8. A. Migdal, Phys. Rev. 103, 1811 (1956).

    Article  ADS  MATH  Google Scholar 

  9. H. A. Bethe and W. Heitler, Proc. R. Soc. 164, 257 (1936).

    Google Scholar 

  10. E. Konishi, A. Misaki, and N. Fujimaki, Nuovo Cimento A 44, 509 (1978).

    Article  ADS  Google Scholar 

  11. T. Stanev, Ch. Vankov, R. E. Streitmatter, et al., Phys. Rev. D 25, 1291 (1982).

    Article  ADS  Google Scholar 

  12. A. Misaki, Phys. Rev. D 40, 3086 (1990).

    Article  ADS  Google Scholar 

  13. A. Misaki, Nuovo Cimento Soc. Ital. Fis. C 13, 733 (1990).

    Article  ADS  Google Scholar 

  14. A. Misaki, Fort. Schritt. Phys. 38, 413 (1990).

    Article  ADS  Google Scholar 

  15. E. Konishi, A. Adachi, N. Takahashi, and A. Misaki, J. Phys. G 17, 719 (1991).

    Article  ADS  Google Scholar 

  16. V. Abrashkin, V. Alexandrov, Y. Arakcheev, et al., Adv. Space Res. 37, 1876 (2006).

    Article  ADS  Google Scholar 

  17. T. Ebisuzaki et al., Nucl. Phys. B (Proc. Suppl.) 175–176, 237 (2008).

    Article  Google Scholar 

  18. K. Greisen, Progress in Cosmic Ray Physics (North-Holland, Amsterdam, 1956), Vol. 3.

    Google Scholar 

  19. R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, Phys. Rev. D 58, 093009 (1998).

    Article  ADS  Google Scholar 

  20. U.S. Standard, Atmosphere (U.S. Government Printing Office, Washington, D.C., 1976).

    Google Scholar 

  21. R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, Astropart. Phys. 5, 81 (1996).

    Article  ADS  Google Scholar 

  22. T. K. Gaisser and A. M. Hillas, ProcEedings of the 15th International Cosmic Ray Conference (Plovdiv) 8, 353 (1977).

    ADS  Google Scholar 

  23. M. Nagano, K. Kobayakawa, N. Sakaki, and K. Ando, Astropart. Phys. 22, 235 (2004).

    Article  ADS  Google Scholar 

  24. K. Mannheim, Astropart. Phys. 3, 295 (1995).

    Article  ADS  Google Scholar 

  25. R. J. Protheroe and P. A. Johnson, Astropart. Phys. 4, 253 (1995).

    Article  ADS  Google Scholar 

  26. G. Sigl, S. Lee, D. N. Schramm, and P. Coppi, Phys. Lett. B 392, 129 (1997).

    Article  ADS  Google Scholar 

  27. O. E. Kalashev, V. A. Kuzmin, and D. V. Semikoz, arXiv:9911035v3[astro-ph] (1999).

  28. O. E. Kalashev, V. A. Kuzmin, D. V. Semikoz, and G. Sigl, arXiv:0205050v3[hep-ph] (2002).

  29. E. Waxman and J. Bahcall, Phys. Rev. D 59, 023002 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazawa, K., Higashide, K., Nakamura, I. et al. Landau-pomeranchuk-migdal air showers initiated by ultra-high-energy neutrinos and their detection in a satellite-based experiment. Jetp Lett. 93, 299–304 (2011). https://doi.org/10.1134/S0021364011060075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011060075

Keywords

Navigation