Skip to main content
Log in

Effect of interlayer single-particle hoppings on the superconducting transition temperature

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It is well known that the superconducting transition temperature of high-T c cuprates depends on the number of CuO2 planes in the unit cell. The multilayer structure implies the possibility of interlayer hopping. Under the assumption that the interlayer hopping can be specified by the parameter t (k) = t (cos(k x ) − cos(k y ))2, the quasiparticle excitation spectrum for the bilayer cuprate in the superconducting state has been determined in the framework of the tt′ − t″ − t J* model using the generalized mean-field approximation. It turns out that the interlayer hoppings does not create any additional mechanism of the Cooper paring and does not lead to an increase in T c . The splitting of the upper Hubbard quasiparticle band attributed to the interlayer hoppings is manifested as two peaks in the doping dependence of the superconducting transition temperature at temperatures below the maximum T c value for a single-layer cuprate. It has been found that antiferromagnetic interlayer correlations suppress the interlayer splitting. This probably leads to the common doping dependence of T c for both single-layer and bilayer cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. J. Chen and H. Q. Lin, Phys. Rev. B 69, 104518 (2004).

    Article  ADS  Google Scholar 

  2. J. S. Schilling, in Treatise on High-T c Superconductivity, Ed. by J. R. Schrieffer (Springer, Berlin, 2006), Ch. “High Pressure Effects.”

    Google Scholar 

  3. M. Korshunov, V. Gavrichkov, S. Ovchinnikov, et al., Phys. Rev. B 72, 165104 (2005).

    Article  ADS  Google Scholar 

  4. M. Korshunov and S. Ovchinnikov, Eur. Phys. J. B 57, 271 (2007).

    Article  ADS  Google Scholar 

  5. S. G. Ovchinnikov, I. A. Makarov, and E. A. Shneider, Zh. Eksp. Teor. Fiz. 139, 334 (2011).

    Google Scholar 

  6. D. L. Feng, N. P. Armitage, D. H. Lu, et al., Phys. Rev. Lett. 86, 5550 (2001).

    Article  ADS  Google Scholar 

  7. Y. -D. Chuang, A. D. Gromko, and A. Fedorov, Phys. Rev. Lett. 87, 117002 (2001).

    Article  ADS  Google Scholar 

  8. A. A. Kordyuk, S. V. Borisenko, M. S. Golden, et al., Phys. Rev. B 66, 014502 (2002).

    Article  ADS  Google Scholar 

  9. S. Sahrakorpi et al., Phys. Rev. Lett. 95, 157601 (2005).

    Article  ADS  Google Scholar 

  10. T. Kondo, R. Khasanov, Y. Sassa, et al., Phys. Rev. B 80, 100505 (2009).

    Article  ADS  Google Scholar 

  11. A. Kaminski, S. Rosenkranz, H. M. Fretwell, et al., Phys. Rev. B 73, 174511 (2006).

    Article  ADS  Google Scholar 

  12. L. P. Bulaevskii, E. L. Nagaev, and D. L. Khomskii, Zh. Eksp. Teor. Fiz. 54, 1562 (1968) [Sov. Phys. JETP 27, 836 (1968)].

    Google Scholar 

  13. O. K. Andersen et al., J. Phys. Chem. Solids 56, 1573 (1995).

    Article  ADS  Google Scholar 

  14. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Article  ADS  MATH  Google Scholar 

  15. V. V. Val’kov et al., Pis’ma Zh. Eksp. Teor. Fiz. 75, 450 (2002) [JETP Lett. 75, 378 (2002)].

    Google Scholar 

  16. V. V. Val’kov and D. M. Dzebisashvili, Zh. Eksp. Teor. Fiz. 127, 686 (2005) [J. Exp. Theor. Phys. 100, 608 (2005)].

    Google Scholar 

  17. N. M. Plakida and V. S. Oudovenko, Phys. Rev. B 59, 11949 (1999).

    Article  ADS  Google Scholar 

  18. R. Hayn, A. F. Barabanov, and J. Schulenburg, Z. Phys. B 102, 359 (1997).

    Article  ADS  Google Scholar 

  19. E. I. Shneider and S. G. Ovchinnikov, Pis’ma Zh. Eksp. Teor. Fiz. 83, 462 (2006) [JETP Lett. 83, 394 (2006)].

    Google Scholar 

  20. K. Byczuk and J. Spalek, Phys. Rev. B 53, R518 (1996).

    Article  ADS  Google Scholar 

  21. A. F. Barabanov, L. A. Maksimov, and L. E. Zhukov, Physica C 212, 375 (1993).

    Article  ADS  Google Scholar 

  22. J. M. Tranquada, D. E. Cox, W. Kunnmann, et al., Phys. Rev. Lett. 60, 156 (1988).

    Article  ADS  Google Scholar 

  23. A. Barabanov and O. Starykh, J. Phys. Soc. Jpn. 61, 704 (1992).

    Article  ADS  Google Scholar 

  24. A. F. Barabanov and V. M. Berezovskii, Zh. Eksp. Teor. Fiz. 106, 1156 (1994) [J. Exp. Theor. Phys. 79, 627 (1994)].

    Google Scholar 

  25. D. L. Feng, N. P. Armitage, D. H. Lu, et al., Phys. Rev. Lett. 86, 5550 (2001).

    Article  ADS  Google Scholar 

  26. U. Welp, M. Grimsditch, S. Fleshler, et al., Phys. Rev. Lett. 69, 2130 (1992).

    Article  ADS  Google Scholar 

  27. C. Meingast, O. Kraut, T. Wolf, et al., Phys. Rev. Lett. 67, 1634 (1991).

    Article  ADS  Google Scholar 

  28. M. Kund and K. Andres, Physica C 205, 32 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Makarov.

Additional information

Original Russian Text © I.A. Makarov, S.G. Ovchinnikov, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 93, No. 6, pp. 372–377.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, I.A., Ovchinnikov, S.G. Effect of interlayer single-particle hoppings on the superconducting transition temperature. Jetp Lett. 93, 339–343 (2011). https://doi.org/10.1134/S0021364011060063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011060063

Keywords

Navigation