Skip to main content
Log in

Photon-pion transition form factor at high photon virtualities within the nonlocal chiral quark model

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Recently, the BABAR collaboration reported the measurements of the photon-pion transition form factor F πγγ*(Q 2), which are in strong contradiction to the predictions of the standard factorization approach to perturbative QCD. In the present work, based on a nonperturbative approach to the QCD vacuum and on rather universal assumptions, we show that there exist two asymptotic regimes for the pion transition form factor. One regime with the asymptotic behavior F πγ*γ(Q 2) ∼ 1/Q 2 corresponds to the result of the standard QCD factorization approach, while other violates the standard factorization and leads to asymptotic behavior as F πγ*γ(Q 2) ∼ ln(Q 2)/Q 2. Furthermore, considering specific nonlocal chiral quark models, we find the region of parameters, where the existing CELLO, CLEO and BABAR data for the pion transition form factor are successfully described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Radyushkin, hep-ph/0410276 (1977).

  2. G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979).

    Article  ADS  Google Scholar 

  3. A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 42, 97 (1980).

    Article  Google Scholar 

  4. A. V. Efremov and A. V. Radyushkin, Phys. Lett. B 94, 245 (1980).

    Article  ADS  Google Scholar 

  5. A. V. Efremov and A. V. Radyushkin, Presented at the 19th International Conference on High Energy Physics, Tokyo, Japan, Aug. 23–30, 1978.

  6. G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).

    Article  ADS  Google Scholar 

  7. S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 1808 (1981).

    Article  ADS  Google Scholar 

  8. S. L. Adler, Phys. Rev. 177, 2426 (1969).

    Article  ADS  Google Scholar 

  9. J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969).

    Article  ADS  Google Scholar 

  10. H. J. Behrend et al. (CELLO Collab.), Z. Phys. C 49, 401 (1991).

    Article  Google Scholar 

  11. J. Gronberg et al. (CLEO Collab.), Phys. Rev. D 57, 33 (1998); hep-ex/9707031.

    Article  ADS  Google Scholar 

  12. B. Aubert et al. (The BABAR Collab.), Phys. Rev. D 80, 052002 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  13. A. E. Dorokhov, Eur. Phys. J. C 42, 309 (2005); hepph/0505007.

    Article  ADS  Google Scholar 

  14. A. E. Dorokhov and L. Tomio, Phys. Rev. D 62, 014016 (2000).

    Article  ADS  Google Scholar 

  15. A. E. Dorokhov, S. V. Esaibegian, and S. V. Mikhailov, Phys. Rev. D 56, 4062 (1997); hep-ph/9702417.

    Article  ADS  Google Scholar 

  16. E. V. Shuryak, Nucl. Phys. B 214, 237 (1983).

    Article  ADS  Google Scholar 

  17. A. E. Dorokhov and N. I. Kochelev, Z. Phys. C 46, 281 (1990).

    Article  Google Scholar 

  18. J. Terning, Phys. Rev. D 44, 887 (1991).

    Article  ADS  Google Scholar 

  19. R. D. Bowler and M. C. Birse, Nucl. Phys. A 582, 655 (1995); hep-ph/9407336.

    Article  ADS  Google Scholar 

  20. R. S. Plant and M. C. Birse, Nucl. Phys. A 703, 717 (2002); hep-ph/0007340.

    Article  ADS  Google Scholar 

  21. A. E. Dorokhov, JETP Lett. 77, 63 (2003); hepph/0212156.

    Article  ADS  Google Scholar 

  22. H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979).

    Article  ADS  Google Scholar 

  23. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980).

    Google Scholar 

  24. O. I. Zavialov, Renormalized Quantum Field Theory (Kluwer Academic, Dordrecht, 1990).

    MATH  Google Scholar 

  25. A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997); hepph/9704207.

    Article  ADS  Google Scholar 

  26. S. V. Esaibegian and S. N. Tamarian, Sov. J. Nucl. Phys. 51, 310 (1990).

    Google Scholar 

  27. A. E. Dorokhov, Nuovo Cim. A 109, 391 (1996).

    Article  ADS  Google Scholar 

  28. V. Y. Petrov, M. V. Polyakov, R. Ruskov, et al., Phys. Rev. D 59, 114018 (1999); hep-ph/9807229.

    Article  ADS  Google Scholar 

  29. I. V. Anikin, A. E. Dorokhov, and L. Tomio, Phys. Lett. B 475, 361 (2000); hep-ph/9909368.

    Article  ADS  Google Scholar 

  30. G. V. Efimov and M. A. Ivanov, Int. J. Mod. Phys. A 4, 2031 (1989).

    Article  ADS  Google Scholar 

  31. G. V. Efimov and M. A. Ivanov, The Quark Confinement Model of Hadrons (IOP, Bristol, UK, 1993).

    Google Scholar 

  32. A. E. Radzhabov and M. K. Volkov, Eur. Phys. J. A 19, 139 (2004); hep-ph/0305272.

    Article  ADS  Google Scholar 

  33. A. V. Radyushkin, Phys. Rev. D 80, 094009 (2009).

    Article  ADS  Google Scholar 

  34. A. E. Dorokhov, Phys. Part. Nucl. Lett. 7, 229 (2010).

    Article  Google Scholar 

  35. A. E. Dorokhov, Nucl. Phys. Proc. Suppl. 198, 190–193 (2010).

    Article  ADS  Google Scholar 

  36. E. Ruiz Arriola and W. Broniowski, Phys. Rev. D 66, 094016 (2002); hep-ph/0207266.

    Article  ADS  Google Scholar 

  37. R. M. Davidson and E. Ruiz Arriola, Phys. Lett. B 348, 163 (1995).

    Article  ADS  Google Scholar 

  38. I. V. Musatov and A. V. Radyushkin, Phys. Rev. D 56, 2713 (1997); hep-ph/9702443.

    Article  ADS  Google Scholar 

  39. D. Diakonov and V. Y. Petrov, Nucl. Phys. B 272, 457 (1986).

    Article  ADS  Google Scholar 

  40. B. Holdom, J. Terning, and K. Verbeek, Phys. Lett. B 245, 612 (1990).

    Article  ADS  Google Scholar 

  41. B. Holdom, Phys. Rev. D 45, 2534 (1992).

    Article  ADS  Google Scholar 

  42. I. V. Anikin, A. E. Dorokhov, and L. Tomio, Phys. Part. Nucl. 31, 509 (2000).

    Google Scholar 

  43. A. E. Dorokhov and W. Broniowski, Eur. Phys. J. C 32, 79 (2003), hep-ph/0305037.

    Article  ADS  Google Scholar 

  44. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).

    Article  ADS  Google Scholar 

  45. K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys. Rev. D 64, 016005 (2001), hep-ph/0102254.

    Article  ADS  Google Scholar 

  46. A. A. Pivovarov, Phys. Atom. Nucl. 66, 902 (2003), hep-ph/0110248.

    Article  ADS  Google Scholar 

  47. A. E. Dorokhov, Phys. Rev. D 70, 094011 (2004), hepph/0405153.

    Article  ADS  Google Scholar 

  48. K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004), hep-ph/0312226.

    Article  ADS  Google Scholar 

  49. A. E. Dorokhov and W. Broniowski, Phys. Rev. D 78, 073011 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorokhov, A.E. Photon-pion transition form factor at high photon virtualities within the nonlocal chiral quark model. Jetp Lett. 92, 707–719 (2010). https://doi.org/10.1134/S0021364010220145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010220145

Keywords

Navigation