Skip to main content
Log in

Solid-state reactions in Ga/Mn thin films: Formation and magnetic properties of the ϕ-Ga7.7Mn2.3 phase

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Experimental results concerning the solid-state synthesis of the ϕ-Ga7.7Mn2.3 phase in Ga/Mn thin films are presented. A ferromagnetic (or ferrimagnetic) state is observed in the samples annealed at temperatures above 250°C. The X-ray diffraction studies demonstrate the formation of the ϕ-Ga7.7Mn2.3 phase, which is poly-crystalline being grown on glass substrates and exhibits the preferential cube-on-cube orientation on MgO(001) substrates. A strong dependence of the perpendicular anisotropy constant K and of the effective biaxial anisotropy constant K eff1 on the magnetic field H has been found. Owing to such dependence, the easy axis of magnetization lying in the plane of the film changes its direction approaching the film normal when the increasing magnetic field exceeds 8 kOe. The anomalous behavior of K and K eff1 constants is explained both by the in-plane stresses arising in the course of the formation of the ϕ-Ga7.7Mn2.3 phase and by the direct dependence of magnetostriction constants on the magnetic field. For the ϕ-Ga7.7Mn2.3 phase, the saturation magnetization M S has been determined and the first magnetocrystalline anisotropy constant K 1 has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ohno, D. K. Young, B. Beschoten, et al., Nature 402, 790 (1999); S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Science 294, 1488 (2001); T. Jungwirth, J. Sinova, J. Masek, et al., Rev. Mod. Phys. 78, 809 (2006); D. Chiba, M. Sawicki, Y. Nishitani, et al., Nature 455, 515 (2008); M. Sawicki, D. Chiba, A. Korbecka, et al., Nature Phys. 6, 22 (2010); A. Bonanni and T. Dietl, Chem. Soc. Rev. 39, 528 (2010).

    Article  ADS  Google Scholar 

  2. S. Kim, H. Lee, T. Yoo, et al., J. Appl. Phys. 107, 103911 (2010); M. Cubukcu, H. J. von Bardeleben, J. L. Cantin, and A. Lemaître, Appl. Phys. Lett. 96, 102502 (2010).

    Article  ADS  Google Scholar 

  3. T. Krenke, E. Duman, M. Acet, et al., Nature Mater. 4, 450 (2005); M. Chmielus, X. X. Zhang, C. Witherspoon, et al., Nature Mater. 8, 863 (2009); O. Heczko, L. Straka, and V. Novak1, J. Appl. Phys. 107, 09A914 (2010); M. Zeng, M.-Q. Cai, S. W. Or, and H. Chan, J. Appl. Phys. 107, 083713 (2010).

    Article  ADS  Google Scholar 

  4. C. Demangeat and J. C. Parlebas, Rep. Prog. Phys. 65, 1679 (2002); S. J. Pearton, C. R. Abernathy, G. T. Thaler, et al., J. Phys.: Condens. Matter. 16, R209 (2004); R. B. Morgunov and A. I. Dmitriev, Ross. Khim. Zh. 53, 36 (2009).

    Article  ADS  Google Scholar 

  5. J. S. Wu and K. H. Kuo, Metall. Mater. Trans. A 28, 729 (1997); J. P. Zhang, A. K. Cheetham, K. Sun, et al., Appl. Phys. Lett. 71, 143 (1997).

    Google Scholar 

  6. B. Balke, G. H. Fecher, J. Winterlik, and C. Felser, Appl. Phys. Lett. 90, 152504 (2007).

    Article  ADS  Google Scholar 

  7. K. M. Krishnan, Appl. Phys. Lett. 61, 2365 (1992); M. Tanaka, J. P. Harbison, J. DeBoeck, et al., Appl. Phys. Lett. 62, 1565 (1993); F. Wu, S. Mizukami, D. Watanabe, et al., Appl. Phys. Lett. 94, 122503 (2009); F. Wu, E. P. Sajitha, S. Mizukami, et al., Appl. Phys. Lett. 96, 042505 (2010).

    Article  ADS  Google Scholar 

  8. F. Wu, S. Mizukami, and D. Watanabe, J. Phys.: Conf. Ser. 200, 062037 (2010).

    Article  ADS  Google Scholar 

  9. T. Matsui, M. Suzuki, K. Morii, and Y. Nakayama, J. Appl. Phys. 73, 6683 (1993).

    Article  ADS  Google Scholar 

  10. S. Mangin, D. Ravelosona, J. A. Katine, et al., Nature Mater. 5, 210 (2006).

    Article  ADS  Google Scholar 

  11. J. L. Hilton, B. D. Schultz, and C. J. Palmstrom, J. Appl. Phys. 102, 063513 (2007); Y. Osafune, G. S. Song, and J. I. Hwang, J. Appl. Phys. 103, 103717 (2008).

    Article  ADS  Google Scholar 

  12. J. I. Hwang, Y. Osafune, M. Kobayashi, et al., J. Appl. Phys. 101, 103709 (2007).

    Article  ADS  Google Scholar 

  13. W. Feng, D. D. Dung, Y. Shin, et al., J. Korean Phys. Soc. 56, 1382 (2010).

    Article  ADS  Google Scholar 

  14. JCDPS cards no 35-1094, International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, Pennsylvania, USA.

  15. E. A. Nesbitt, H. J. Williams, and R. M. Bozorth, J. Appl. Phys. 25, 1014 (1954).

    Article  ADS  Google Scholar 

  16. J. F. Freedman, J. Appl. Phys. 33, 1148 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Myagkov.

Additional information

Original Russian Text © V.G. Myagkov, V.S. Zhigalov, L.E. Bykova, L.A. Solov’ev, G.S. Patrin, D.A. Velikanov, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 92, No. 10, pp. 757–761.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myagkov, V.G., Zhigalov, V.S., Bykova, L.E. et al. Solid-state reactions in Ga/Mn thin films: Formation and magnetic properties of the ϕ-Ga7.7Mn2.3 phase. Jetp Lett. 92, 687–691 (2010). https://doi.org/10.1134/S0021364010220108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010220108

Keywords

Navigation