JETP Letters

, Volume 92, Issue 7, pp 437–443 | Cite as

Coherent and diffuse X-ray scattering from a multicomponent superlattice with quantum dots

Article

Abstract

GaAs-AlAs superlattices with InAs quantum dots grown by molecular beam epitaxy have been studied by high-resolution X-ray diffractometry. It has been experimentally revealed that the maxima of the superstructural diffuse scattering from the quantum dots do not coincide with the angular positions of the coherent superstructural satellites. A statistical theory of diffraction on the superlattice taking into account the spatial correlation of the quantum dots has been developed to explain this effect. It has been shown within this theory that the peak positions of the diffuse component can differ from the maxima of the coherent scattering. X-ray scattering by the multicomponent superlattice have been numerically simulated and the calculation results have been compared with the experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zh. I. Alferov, Rev. Mod. Phys. 72, 767 (2001).CrossRefADSGoogle Scholar
  2. 2.
    J. Stangl, V. Holy, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).CrossRefADSGoogle Scholar
  3. 3.
    V. I. Punegov, Fiz. Tverd. Tela 32, 2476 (1990) [Sov. Phys. Solid State 32, 1438 (1990)].Google Scholar
  4. 4.
    V. I. Punegov and K. M. Pavlov, Kristallografiya 38(5), 34 (1993) [Crystallogr. Rep. 38, 602 (1993)].Google Scholar
  5. 5.
    A. A. Darhuber, P. Schittenhelm, V. Holy, et al., Phys. Rev. B 55, 15652 (1997).CrossRefADSGoogle Scholar
  6. 6.
    V. I. Punegov, Y. I. Nesterets, and V. D. Roshchupkin, J. Appl. Crystallogr. 43, 520 (2010).CrossRefGoogle Scholar
  7. 7.
    N. Faleev, K. Pavlov, M. Tabuchi, and Y. Takeda, Jpn. J. Appl. Phys. 38, 818 (1999).CrossRefADSGoogle Scholar
  8. 8.
    N. N. Faleev, K. M. Pavlov, V. I. Punegov, et al., Fiz. Tekh. Poluprovodn. 33, 1359 (1999) [Semiconductors 33, 1229 (1999)].Google Scholar
  9. 9.
    N. N. Faleev, Yu. G. Musikhin, A. A. Suvorova, et al., Fiz. Tekh. Poluprovodn. 35, 969 (2001) [Semiconductors 35, 932 (2001)].Google Scholar
  10. 10.
    G. Springholz and V. Holy, Lateral Alignment of Epitaxial Quantum Dots (Springer, Berlin, 2007), p. 247.Google Scholar
  11. 11.
    Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, J. Cryst. Growth 201–202, 1131 (1999).CrossRefGoogle Scholar
  12. 12.
    L. Esaki, L. L. Chang, and E. E. Mendez, Jpn. J. Appl. Phys. 20, L529 (1981).CrossRefADSGoogle Scholar
  13. 13.
    V. I. Punegov and Ya. I. Nesterets, Pis’ma Zh. Tekh. Fiz. 20(16), 62 (1994) [Tech. Phys. Lett. 20, 674 (1994)].Google Scholar
  14. 14.
    Ya. I. Nesterets and V. I. Punegov, Acta Crystallogr. A 56, 540 (2000).CrossRefGoogle Scholar
  15. 15.
    M. A. Krivoglaz, X-ray and Neutron Diffraction in Nonideal Crystals (Naukova Dumka, Kiev, 1983; Springer, Berlin, 1996).Google Scholar
  16. 16.
    N. Kato, Acta Crystallogr. A 36, 763 (1980).CrossRefADSGoogle Scholar
  17. 17.
    V. I. Punegov, Kristallografiya 54, 415 (2009) [Crystallogr. Rep. 54, 391 (2009)].Google Scholar
  18. 18.
    V. Nenashev and A. V. Dvurechenskii, J. Appl. Phys. 107, 064322(1–8) (2010).CrossRefGoogle Scholar
  19. 19.
    R. Maranganti and P. Sharma, Handbook of Theoretical and Computational Nanotechnology (Amer. Sci. Publ., Valencia, CA, 2006), Ch. 118, pp. 1–44.Google Scholar
  20. 20.
    V. I. Punegov, Phys. Status Solidi A 136, 9 (1993).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Komi Scientific Center, Ural DivisionRussian Academy of SciencesSyktyvkarRussia
  2. 2.School of ECEEArizona State UniversityTempeUSA

Personalised recommendations