Skip to main content
Log in

Dynamic and spectral mixing in nanosystems

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In the framework of a simple spin-boson Hamiltonian we study an interplay between dynamic and spectral roots to stochastic-like behavior. The Hamiltonian describes an initial vibrational state coupled to discrete dense spectrum reservoir. The reservoir states are formed by three sequences with rationally independent periodicities 1; 1 ± δ typical for vibrational states in many nanosize systems (e.g., large molecules containing CH2 fragment chains, or carbon nanotubes). We show that quantum evolution of the system is determined by a dimensionless parameter δΓ, where Γ is characteristic number of the reservoir states relevant for the initial vibrational level dynamics. When δΓ > 1 spectral chaos destroys recurrence cycles and the system state evolution is stochastic-like. In the opposite limit δΓ < 1 dynamics is regular up to the critical recurrence cycle k c and for larger k > k c dynamic mixing leads to quasi-stochastic time evolution. Our semi-quantitative analytic results are confirmed by numerical solution of the equation of motion. We anticipate that both kinds of stochastic-like behavior (namely, due to spectral mixing and recurrence cycle dynamic mixing) can be observed by femtosecond spectroscopy methods in nanosystems in the spectral window 1011–1013 s−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 587 (1983).

    MathSciNet  Google Scholar 

  2. A. J. Leggett, S. Chakravarty, A. T. Dorsey, et al., Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

  3. P. Grigolini, Quantum Mechanical Irreversibility (World Sci., Singapore, 1993).

    Google Scholar 

  4. F. Haake, Quantum Signature of Chaos, 2nd ed. (Springer, Berlin, 2001).

    Google Scholar 

  5. M. L. Mehta, Random Matrices, 3rd ed. (Academic, New York, 2004).

    MATH  Google Scholar 

  6. T. Papenbrock and H. A. Weldenmuller, Rev. Mod. Phys. 79, 997 (2007).

    Article  ADS  Google Scholar 

  7. V. A. Benderskii, L. A. Falkovsky, and E. I. Kats, JETP Lett. 86, 311 (2007).

    Article  Google Scholar 

  8. V. A. Benderskii, L. N. Gak, and E. I. Kats, J. Exp. Theor. Phys. 108, 160 (2009); J. Exp. Theor. Phys. 109, 505 (2009).

    Article  ADS  Google Scholar 

  9. V. A. Benderskii and E. I. Kats, Eur. Phys. J. D 54, 597 (2009).

    Article  ADS  Google Scholar 

  10. R. Zwanzig, Lect. Theor. Phys. 3, 106 (1960).

    Google Scholar 

  11. R. C. Snyder, J. Mol. Spectrosc. 4, 411 (1960).

    Article  ADS  Google Scholar 

  12. T. Ishioka, W. Yan, H. L. Strauss, and R. G. Snyder, Spectrochim. Acta A 59, 671 (2003).

    Article  ADS  Google Scholar 

  13. K. R. Rodriguez, S. Shah, S. M. Williams, et al., J. Chem. Phys. 121, 8671 (2004).

    Article  ADS  Google Scholar 

  14. J. M. Thomas, Angew. Chem. 43, 2606 (2010).

    Google Scholar 

  15. O. P. Charkin, N. M. Klimenko, D. O. Charkin, et al., J. Inorg. Chem. 51(Suppl. 1), 1 (2006).

    Google Scholar 

  16. Ya. G. Sinai, Introduction to Ergodic Theory (Princeton Univ., Princeton, 1976).

    MATH  Google Scholar 

  17. R. M. Gray, Probability, Random Processes and Ergodic Properties (Springer, Berlin, 2006).

    Google Scholar 

  18. S. Luzatto, Arxiv, Math. (2004).

  19. G. M. Zaslavskii, Chaos in Dynamical Systems (Harwood, New York, 1985).

    Google Scholar 

  20. E. P. Wigner, SIAM Rev. 9, 1 (1967).

    Article  MATH  ADS  Google Scholar 

  21. H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw Hill, New York, 1953), vol. 2.

    Google Scholar 

  22. A. V. Benderskii and K. B. Eisental, J. Phys. Chem. A 106, 7482 (2002).

    Article  Google Scholar 

  23. C. J. Fecko, J. D. Eaves, J. J. Loparo, et al., Science 301, 1698 (2003).

    Article  ADS  Google Scholar 

  24. D. E. Logan and P. G. Wolynes, J. Chem. Phys. 93, 4994 (1990); M. Gruebele and P. G. Wolynes, Acc. Chem. Res. 37, 261 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benderskii, V.A., Kats, E.I. Dynamic and spectral mixing in nanosystems. Jetp Lett. 92, 370–374 (2010). https://doi.org/10.1134/S0021364010180025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010180025

Keywords

Navigation