Skip to main content
Log in

q-Breathers and thermalization in acoustic chains with arbitrary nonlinearity Index

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Nonlinearity shapes lattice dynamics affecting vibrational spectrum, transport and thermalization phenomena. Beside breathers and solitons one finds the third fundamental class of nonlinear modes, q-breathers, i.e., periodic orbits in nonlinear lattices, exponentially localized in the reciprocal mode space. To date, the studies of q-breathers have been confined to the cubic and quartic nonlinearity in the interaction potential. In this paper we study the case of arbitrary nonlinearity index γ in an acoustic chain. We uncover qualitative difference in the scaling of delocalization and stability thresholds of q-breathers with the system size: there exists a critical index γ* = 6, below which both thresholds (in nonlinearity strength) tend to zero, and diverge when above. We also demonstrate that this critical index value is decisive for the presence or absence of thermalization. For a generic interaction potential the mode space localized dynamics is determined only by the three lowest order nonlinear terms in the power series expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fermi, J. Pasta, and S. Ulam, Los Alamos Report LA-1940, (1955); in Collected Papers of Enrico Fermi, Ed. by E. Segre (Univ. Chicago, 1965), Vol. II, p. 978; May-Body Problems, Ed. by D. C. Mattis (World Sci., Singapore, 1993).

  2. J. Ford, Phys. Rep. 213, 271 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  3. Focus Issue: The Fermi-Pasta—Ulam Problem—The first fifty years, Ed. by D. K. Campbell, P. Rosenau, and G. M. Zaslavsky, Chaos 15(1), (2005).

    Google Scholar 

  4. G. P. Berman and F. M. Izrailev, Chaos 15, 015104 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  5. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

    Article  ADS  Google Scholar 

  6. F. M. Izrailev and B. V. Chirikov, Preprint, Inst. Nuclear Physics (Novosibirsk, 1965); Dokl. Akad. Nauk SSSR 166, 57 (1966) [Sov. Phys. Dokl. 11, 30 (1966)].

  7. J. De Luca, A. J. Lichtenberg, and M. A. Lieberman, Chaos 5, 283 (1995).

    Article  ADS  Google Scholar 

  8. D. L. Shepelyansky, Nonlinearity 10, 1331 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. P. Bocchierri, A. Scotti, B. Bearzi, and A. Loigner, Phys. Rev. A 2, 2013 (1970); L. Galgani and A. Scotti, Phys. Rev. Lett. 28, 1173 (1972); A. Patrascioiu, Phys. Rev. Lett. 50, 1879 (1983).

    Article  ADS  Google Scholar 

  10. H. Kantz, Physica D 39, 322 (1989); H. Kantz, R. Livi, and S. Ruffo, J. Stat. Phys. 76, 627 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. L. Casetti, M. Cerruti-Sola, M. Pettini, and E. G. D. Cohen, Phys. Rev. E 55, 6566 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Flach, M. V. Ivanchenko, and O. I. Kanakov, Phys. Rev. Lett. 95, 064102 (2005); S. Flach, M. V. Ivanchenko, and O. I. Kanakov, Phys. Rev. E 73, 036618 (2006); M. V. Ivanchenko et al., Phys. Rev. Lett. 97, 025505 (2006); O. I. Kanakov et al., Phys. Lett. A 365, 416 (2007); K. G. Mishagin et al., New J. Phys. 10, 073034 (2008); M. V. Ivanchenko, Phys. Rev. Lett. 102, 175507 (2009); M. V. Ivanchenko, Pis’ma Zh. Eksp. Teor. Fiz. 89, 170 (2009) [JETP Lett. 89, 150 (2009)].

    Article  ADS  Google Scholar 

  13. R. S. MacKay and S. Aubry, Nonlinearity 7, 1623 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. M. A. Lyapunov, Probleme Generale de la Stabilite du Mouvement (Princeton Univ., Princeton, 1949), p. 375; J. Horn, Z. Math. Phys. 48, 400 (1903).

    Google Scholar 

  15. K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005); M. Li, H. X. Tang, and M. L. Roukes, Nature Nanotech. 2, 114 (2007).

    Article  ADS  Google Scholar 

  16. M. Sato, B. E. Habbard, and A. J. Sievers, Rev. Mod. Phys. 78, 137 (2006); M. Sato and A. J. Sievers, Low Temp. Phys. 34, 543 (2008).

    Article  ADS  Google Scholar 

  17. E. Buks and M. L. Roukes, J. Micromech. Sys. 11, 802 (2002); M. Zalalutdinov et al., Appl. Phys. Lett. 88, 143504 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ivanchenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanchenko, M.V. q-Breathers and thermalization in acoustic chains with arbitrary nonlinearity Index. Jetp Lett. 92, 365–369 (2010). https://doi.org/10.1134/S0021364010180013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010180013

Keywords

Navigation