Skip to main content
Log in

Phase segregation in Na x CoO2 for large Na contents

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We have investigated a set of sodium cobaltates (Na x CoO2) samples with various sodium content (0.67 ≤ x ≤ 0.75) using Nuclear Quadrupole Resonance (NQR). The four different stable phases and an intermediate one have been recognized. The NQR spectra of 59Co allowed us to clearly differentiate the pure phase samples which could be easily distinguished from multi-phase samples. Moreover, we have found that keeping samples at room temperature in contact with humid air leads to destruction of the phase purity and loss of sodium content. The high sodium content sample evolves progressively into a mixture of the detected stable phases until it reaches the x = 2/3 composition which appears to be the most stable phase in this part of phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Foo, Y. Wang, S. Watauchi, et al., Phys. Rev. Lett. 92, 247001 (2004).

    Article  ADS  Google Scholar 

  2. K. Takada, H. Sakurai, E. Takayama-Muromachi, et al., Nature (London) 422, 53 (2003).

    Article  ADS  Google Scholar 

  3. J. Wooldridge, D. McK Paul, G. Balakrishnan, and M. R. Lees, J. Phys.: Condens. Matter 17, 70–7718 (2005).

    Article  Google Scholar 

  4. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, et al., Usp. Fiz. Nauk 179, 837 (2009) [Phys. Usp. 52, 789 (2009)].

    Article  Google Scholar 

  5. C. Julien and G. A. Nazri, Solid State Batteries: Materials Design and Optimization (Kluwer, Boston, 1994).

    Google Scholar 

  6. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  ADS  Google Scholar 

  7. H. D. Bhatt, R. Vedula, S. B. Desu, and G. C. Fralick, Thin Solid Films 350, 249 (1999).

    Article  ADS  Google Scholar 

  8. J.-W. Moon, Y. Masuda, W. S. Seo, and K. Koumoto, Mater. Lett. 48, 225 (2001).

    Article  Google Scholar 

  9. G. J. Shu, Andrea Prodi, S. Y. Chu, et al., Phys. Rev. B 76, 184115 (2007).

    Article  ADS  Google Scholar 

  10. H. Alloul, I. R. Mukhamedshin, G. Collin, and N. Blanchard, Europhys. Lett. 82, 17002 (2008).

    Article  ADS  Google Scholar 

  11. H. Alloul, I. R. Mukhamedshin, T. A. Platova, and A. V. Dooglav, Europhys. Lett. 85, 47006 (2009).

    Article  ADS  Google Scholar 

  12. T. A. Platova, I. R. Mukhamedshin, H. Alloul, et al., Phys. Rev. B 80, 224106 (2009).

    Article  ADS  Google Scholar 

  13. W. G. Clark, M. E. Hanson, F. Lefloch, and P. Segransan, Rev. Sci. Instrum. 66, 2453 (1995).

    Article  ADS  Google Scholar 

  14. A. P. Bussandri and M. J. Zuriaga, J. Magn. Reson. 131, 224 (1998).

    Article  ADS  Google Scholar 

  15. I. R. Mukhamedshin, H. Alloul, G. Collin, and N. Blanchard, Phys. Rev. Lett. 93, 167601 (2004).

    Article  ADS  Google Scholar 

  16. I. R. Mukhamedshin, H. Alloul, G. Collin, and N. Blanchard, Phys. Rev. Lett. 94, 247602 (2005).

    Article  ADS  Google Scholar 

  17. P. Mendels, D. Bono, J. Bobroff, et al., Phys. Rev. Lett. 94, 136403 (2005).

    Article  ADS  Google Scholar 

  18. A. T. Boothroyd, R. Coldea, D. A. Tennant, et al., Phys. Rev. Lett. 92, 197201 (2004).

    Article  ADS  Google Scholar 

  19. S. P. Bayrakci, I. Mirebeau, P. Bourges, et al., Phys. Rev. Lett. 94, 157205 (2005).

    Article  ADS  Google Scholar 

  20. Y. S. Meng, Y. Hinuma, and G. Ceder, J. Chem. Phys. 128, 104708 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Platova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platova, T.A., Mukhamedshin, I.R., Dooglav, A.V. et al. Phase segregation in Na x CoO2 for large Na contents. Jetp Lett. 91, 421–424 (2010). https://doi.org/10.1134/S0021364010080126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010080126

Keywords

Navigation