Skip to main content

Towards a solution of the cosmological constant problem

Abstract

The standard model of elementary particle physics and the theory of general relativity can be extended by the introduction of a vacuum variable which is responsible for the near vanishing of the present cosmological constant (vacuum energy density). The explicit realization of this vacuum variable can be via a three-form gauge field, an aether-type velocity field, or any other field appropriate for the description of the equilibrium state corresponding to the Lorentz-invariant quantum vacuum. The extended theory has, without fine-tuning, a Minkowski-type solution of the field equations with spacetime-independent fields and provides, therefore, a possible solution of the main cosmological constant problem.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    MATH  MathSciNet  ADS  Article  Google Scholar 

  2. 2.

    S. Weinberg, in Critical Dialogues in Cosmology, Ed. by N. Turok (World Sci., Singapore, 1997), p. 195; arXiv:astro-ph/9610044.

    Google Scholar 

  3. 3.

    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008); arXiv:0711.3170.

    ADS  Article  Google Scholar 

  4. 4.

    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008); arXiv:0806.2805.

    ADS  Article  Google Scholar 

  5. 5.

    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 80, 083001 (2009); arXiv:0905.1919.

    ADS  Article  Google Scholar 

  6. 6.

    M. J. Duff and P. van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980).

    ADS  Article  Google Scholar 

  7. 7.

    A. Aurilia, H. Nicolai, and P. K. Townsend, Nucl. Phys. B 176, 509 (1980).

    MathSciNet  ADS  Article  Google Scholar 

  8. 8.

    S. W. Hawking, Phys. Lett. B 134, 403 (1984).

    MathSciNet  ADS  Article  Google Scholar 

  9. 9.

    M. Henneaux and C. Teitelboim, Phys. Lett. B 143, 415 (1984).

    MathSciNet  ADS  Article  Google Scholar 

  10. 10.

    M. J. Duff, Phys. Lett. B 226, 36 (1989).

    MathSciNet  ADS  Article  Google Scholar 

  11. 11.

    M. J. Duncan and L. G. Jensen, Nucl. Phys. B 336, 100 (1990).

    MathSciNet  ADS  Article  Google Scholar 

  12. 12.

    R. Bousso and J. Polchinski, JHEP 0006, 006 (2000); arXiv:hep-th/0004134.

    MathSciNet  ADS  Article  Google Scholar 

  13. 13.

    A. Aurilia and E. Spallucci, Phys. Rev. D 69, 105004 (2004); arXiv:hep-th/0402096.

    MathSciNet  ADS  Article  Google Scholar 

  14. 14.

    Z. C. Wu, Phys. Lett. B 659, 891 (2008); arXiv:0709.3314.

    MathSciNet  ADS  Article  Google Scholar 

  15. 15.

    M. Veltman, Diagrammatica: The Path to Feynman Rules (Cambridge Univ., Cambridge, England, 1994), Appendix E.

    Google Scholar 

  16. 16.

    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ., Cambridge, England, 1982).

    MATH  Google Scholar 

  17. 17.

    C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).

    MATH  MathSciNet  ADS  Article  Google Scholar 

  18. 18.

    A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    ADS  Article  Google Scholar 

  19. 19.

    W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007); arXiv:0705.1158.

    ADS  Article  Google Scholar 

  20. 20.

    S. A. Appleby and R. A. Battye, Phys. Lett. B 654, 7 (2007); arXiv:0705.3199.

    MathSciNet  ADS  Article  Google Scholar 

  21. 21.

    A. A. Starobinsky, JETP Lett. 86, 157 (2007); arXiv:0706.2041.

    ADS  Article  Google Scholar 

  22. 22.

    P. Brax, C. van de Bruck, A. C. Davis, and D. J. Shaw, Phys. Rev. D 78, 104021 (2008); arXiv:0806.3415.

    MathSciNet  ADS  Article  Google Scholar 

  23. 23.

    F. R. Klinkhamer and G. E. Volovik, JETP Lett. 88, 289 (2008); arXiv:0807.3896.

    ADS  Article  Google Scholar 

  24. 24.

    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 79, 063527 (2009); arXiv:0811.4347.

    ADS  Article  Google Scholar 

  25. 25.

    F. R. Klinkhamer, Phys. Rev. D 81, 043006 (2010), arXiv:0904.3276.

    ADS  Article  Google Scholar 

  26. 26.

    There is no need, here, to dwell on the interpretation of μ0 as a chemical potential [3, 4]. Still, it may be relevant for the future development of the theory that the obtained vacuum can be viewed as a self-sustained system existing at zero external pressure, P ext = 0, and that Eq. (8b) can be read as the integrated form of the thermodynamic Gibbs-Duhem equation, −P = ε −μq, provided the identification μ = dε/dq and the pressure-equilibrium condition P = P ext = 0 hold.

  27. 27.

    A. D. Dolgov, JETP Lett. 41, 345 (1985).

    ADS  Google Scholar 

  28. 28.

    A. D. Dolgov, Phys. Rev. D 55, 5881 (1997); arXiv:astro-ph/9608175.

    ADS  Article  Google Scholar 

  29. 29.

    A. M. Polyakov, Mod. Phys. Lett. A 6, 635 (1991); I. Klebanov and A. M. Polyakov, Mod. Phys. Lett. A 6, 3273 (1991); arXiv:hep-th/9109032.

    MATH  MathSciNet  ADS  Article  Google Scholar 

  30. 30.

    A. M. Polyakov, private communication.

  31. 31.

    A. I. Larkin and S. A. Pikin, Sov. Phys. JETP 29, 891 (1969); J. Sak, Phys. Rev. B 10, 3957 (1974).

    ADS  Google Scholar 

  32. 32.

    T. Jacobson, in Proceedings of the Conference From Quantum to Emergent Gravity: Theory and Phenomenology, PoS QG-PH, 020 (2007); arXiv:0801.1547.

  33. 33.

    V. A. Rubakov and P. G. Tinyakov, Phys. Rev. D 61, 087503 (2000); arXiv:hep-ph/9906239.

    MathSciNet  ADS  Article  Google Scholar 

  34. 34.

    J. Khoury and A. Weltman, Phys. Rev. D 69, 044026 (2004); arXiv:astro-ph/0309411.

    MathSciNet  ADS  Article  Google Scholar 

  35. 35.

    The general term “quintessence” from [36] has, over the years, become associated with a fundamental scalar field and the use of the slightly different term “quinta essential“ for the vacuum field q is to avoid any possible misunderstanding.

  36. 36.

    R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998); arXiv:astro-ph/9708069.

    ADS  Article  Google Scholar 

  37. 37.

    J. J. van der Bij, H. van Dam, and Y. J. Ng, Physica A 116, 307 (1982).

    MathSciNet  ADS  Article  Google Scholar 

  38. 38.

    L. Smolin, Phys. Rev. D 80, 084003 (2009); arXiv:0904.4841.

    MathSciNet  ADS  Article  Google Scholar 

  39. 39.

    As to the terminology of “main“ cosmological constant problem, we refer to the required cancellation of a huge initial contribution to the gravitating vacuum energy density which is of the order of (E ew)4 or more; see also the discussion under Eq. (3).

  40. 40.

    A. G. Riess et al. (Supernova Search Team Collab.), Astron. J. 116, 1009 (1998); arXiv:astro-ph/9805201.

    ADS  Article  Google Scholar 

  41. 41.

    S. Perlmutter et al. (Supernova Cosmology Project Collab.), Astrophys. J. 517, 565 (1999); arXiv:astro-ph/9812133.

    ADS  Article  Google Scholar 

  42. 42.

    E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009); arXiv:0803.0547.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. R. Klinkhamer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klinkhamer, F.R., Volovik, G.E. Towards a solution of the cosmological constant problem. Jetp Lett. 91, 259–265 (2010). https://doi.org/10.1134/S0021364010060019

Download citation

Keywords

  • JETP Letter
  • Minkowski Spacetime
  • Energy Momentum Tensor
  • Vacuum Energy Density
  • Elementary Particle Physic