Skip to main content
Log in

Coulomb zero bias anomaly for fractal geometry and conductivity of granular systems near the percolation threshold

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A granular system slightly below the percolation threshold is a collection of finite metallic clusters, characterized by wide spectrum of sizes, resistances, and charging energies. Electrons hop from cluster to clusters via short insulating “links” of high resistance. At low temperatures all clusters are Coulomb blockaded and the dc-conductivity σ is exponentially suppressed. At lowest T the leading transport mechanism is variable range cotunneling via largest (critical) clusters, leading to the modified Efros-Shklovsky law. At intermediate temperatures the principal suppression of ρ originates from the Coulomb zero bias anomaly occurring, when electron tunnels between adjacent large clusters with large resistances. Such clusters are essentially extended objects and their internal dynamics should be taken into account. In this regime the T-dependence of ρ is stretched exponential with a nontrivial index, expressed through the indices of percolation theory. Due to the fractal structure of large clusters the anomaly is strongly enhanced: it arises not only in low dimensions, but also in d = 3 case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Disorder and Granular Media, Ed. by D. Bideau and A. Hansen (North-Holland, Amsterdam, 1993).

    Google Scholar 

  2. Nanocomposite Science and Technology, Ed. by P. M. Ajayan, L. S. Schadler, and P. V. Braun (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  3. Single Electron Tunnelling, Ed. by H. Grabert and M. H. Devoret (Plenum, New York, London, 1992).

    Google Scholar 

  4. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Fransis, London, 1994).

    Google Scholar 

  5. A. Bunde and S. Havlin, Percolation I, in Fractals and Disordered Systems, Ed. by A. Bunde and S. Havlin (Springer, Berlin, 1996).

    Google Scholar 

  6. The term “touching” does not necessarily mean direct metal-metal contact. In some systems a thin insulating (e.g., oxide) layer still separates two touching grains, but its thickness is much smaller than for nontouching grains.

  7. J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).

    Article  ADS  Google Scholar 

  8. M. V. Feigelman and A. S. Ioselevich, JETP Lett. 81, 341 (2005).

    Google Scholar 

  9. I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. B 72, 125121 (2005).

    Article  ADS  Google Scholar 

  10. A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).

    Article  ADS  Google Scholar 

  11. A. S. Ioselevich and D. S. Lyubshin, JETP Lett. 90, 746 (2009).

    Google Scholar 

  12. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Google Scholar 

  13. A. L. Efros and B. I. Shklovskii, Phys. Stat. Solidi B 76, 475 (1976).

    Article  ADS  Google Scholar 

  14. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Solids, Ed. by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985).

    Google Scholar 

  15. A. M. Finkelshtein, JETP 57, 97 (1983); A. M. Finkelstein, JETP 59, 213 (1984).

    Google Scholar 

  16. Yu. V. Nazarov, JETP 68, 561 (1990); Yu. V. Nazarov, Phys. Rev. B 43, 6220 (1991); G.-L. Ingold and Yu. V. Nazarov, “Charge Tunneling Rates in Ultrasmall Junctions,” Ch. 2 in [3], p. 21.

    Google Scholar 

  17. L. S. Levitov and A. V. Shytov, JETP Lett. 66, 214 (1997).

    Article  ADS  Google Scholar 

  18. E. G. Mishchenko, A. V. Andreev and L. I. Glazman, Phys. Rev. Lett. 87, 246801 (2001).

    Article  ADS  Google Scholar 

  19. R. Egger and A. O. Gogolin, Phys. Rev. Lett. 87, 066401 (2001).

    Article  ADS  Google Scholar 

  20. M. V. Feigelman and A. S. Ioselevich, JETP Lett. 88, 882 (2008).

    Google Scholar 

  21. N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioselevich, A.S. Coulomb zero bias anomaly for fractal geometry and conductivity of granular systems near the percolation threshold. Jetp Lett. 91, 40–47 (2010). https://doi.org/10.1134/S0021364010010108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010010108

Keywords

Navigation