Skip to main content
Log in

Theoretical analysis of tunneling experiments in the MgB2 system

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A detailed theoretical analysis of the experimental data obtained earlier in the studies of the tunneling spectra in the MgB2 two-band superconducting system has been performed. It is shown that most these data are well described in the generalized two-band Bardeen-Cooper-Schrieffer theory with the constants of the intraband electron-phonon interaction that reasonably coincide with the ab initio calculation results. It is shown that the existence of specific collective excitation in this system induced by oscillations of the relative phase of two superconducting condensates (the Leggett mode) indicates the overestimation of the constants of the interband electron-phonon interaction in the ab initio calculations. The dependences of the superconducting gaps and the Leggett mode frequency on the temperature and the disorder degree in the Mg1 − x Al x B2 system have been thoroughly studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Golubov, J. Kortus, O. V. Dolgov, et al., J. Phys.: Condens. Matter. 14, 1353 (2002).

    Article  ADS  Google Scholar 

  2. H. J. Choi, D. Roundy, H. Sun, et al., Phys. Rev. B 66, 020513 (2002).

    Article  ADS  Google Scholar 

  3. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheeva, et al., Solid State Commun. 129, 85 (2004).

    Article  ADS  Google Scholar 

  4. Ya. G. Ponomarev, S. A. Kuzmichev, N. M. Kadomtseva, et al., Pis’ma Zh. Eksp. Teor. Fiz. 79, 597 (2004) [JETP Lett. 79, 484 (2004)].

    Google Scholar 

  5. M. Putti, C. Ferdegrini, M. Monni, et al., Phys. Rev. B 71, 144505 (2005).

    Article  ADS  Google Scholar 

  6. P. Szabo, P. Samuely, Z. Pubalova, et al., Phys. Rev. B 75, 144507 (2007).

    Article  ADS  Google Scholar 

  7. D. Daghero, D. Delaude, A. Galzolani, et al., J. Phys.: Condens. Matter. 20, 085225 (2008).

    Article  ADS  Google Scholar 

  8. A. J. Leggett, Prog. Theor. Phys. 36, 901 (1966).

    Article  ADS  Google Scholar 

  9. S. G. Sharapov, V. P. Gusynin, and H. Beck, Eur. Phys. J. B 30, 45 (2002).

    Article  ADS  Google Scholar 

  10. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, et al., Pis’ma Zh. Eksp. Teor. Fiz. 85, 52 (2007) [JETP Lett. 85, 46 (2007)].

    Google Scholar 

  11. Ya. G. Ponomarev, E. B. Tsokur, M. V. Sudakova, et al., Solid State Comm. 111, 513 (1999).

    Article  ADS  Google Scholar 

  12. E. G. Maksimov, P. I. Arseev, and N. S. Maslova, Solid State Comm. 111, 391 (1999).

    Article  ADS  Google Scholar 

  13. Ya. G. Ponomarev and E. G. Maksimov, Pis’ma Zh. Eksp. Teor. Fiz. 76, 455 (2002) [JETP Lett. 76, 394 (2002)].

    Google Scholar 

  14. K. Schlenga, R. Kleiner, G. Hehtfischer, et al., Phys. Rev. B 57, 14518 (1998).

    Article  ADS  Google Scholar 

  15. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Article  ADS  Google Scholar 

  16. P. B. Allen and B. Mitrovic, Solid State Phys. 37, 1 (1982).

    Article  Google Scholar 

  17. O. V. Dolgov, R. K. Kremer, J. Kortus, et al., Phys. Rev. B 72, 024504 (2005).

    Article  ADS  Google Scholar 

  18. B. Mitrovic, J. Phys.: Cond. Matter 16, 9013 (2004).

    Article  ADS  Google Scholar 

  19. V. G. Kogan, C. Martin, and R. Prozorov, Phys. Rev. B 80, 014507 (2009).

    Article  ADS  Google Scholar 

  20. I. I. Mazin and V. P. Antropov, Physica C 385, 49 (2003).

    Article  ADS  Google Scholar 

  21. J. A. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Article  ADS  Google Scholar 

  22. J. Kortus, O. V. Dolgov, R. K. Kremer, et al., Phys. Rev. Lett. 94, 027002 (2005).

    Article  ADS  Google Scholar 

  23. G. A. Ummarino, R. S. Gonnelli, S. Massida, and A. Bianconi, Physica C 407, 121 (2004).

    Article  ADS  Google Scholar 

  24. J. Karpinski, N. D. Zhigadlo, G. Schuck, et al., Phys. Rev. B 71, 174506 (2006).

    Article  ADS  Google Scholar 

  25. T. Klein, L. Lyard, J. Marcus, et al., Phys. Rev. B 73, 224528 (2006).

    Article  ADS  Google Scholar 

  26. P. Szabo, P. Samuely, Z. Pribulova, et al., Phys. Rev. B 75, 144507 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Maksimov.

Additional information

Original Russian Text © A.E. Karakozov, E.G. Maksimov, Ya.G. Ponomarev, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 91, No. 1, pp. 26–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakozov, A.E., Maksimov, E.G. & Ponomarev, Y.G. Theoretical analysis of tunneling experiments in the MgB2 system. Jetp Lett. 91, 24–29 (2010). https://doi.org/10.1134/S0021364010010066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010010066

Keywords

Navigation