Skip to main content
Log in

Bound states in photonic Fabry-Perot resonator comprised of two nonlinear off-channel defects

  • Atoms, Spectra, Radiations
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Two off-channel nonlinear defects coupled to the photonic waveguide constitute the Fabry-Perot interferometer (FPR). The defects are made from a Kerr-like nonlinear material. For the linear case such a FPR can support the bound states in the form of standing waves between the defects if the distance between them is quantized. For the nonlinear case the bound states appear for arbitrary distance between the defects however for an quantized electromagnetic intensity. For the transmission through FPR we reveal new resonances and show these are a result of coupling of the bound states with incident wave because of nonlinearity of the defects. The resonances are spaced at the eigen frequencies of bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Reinisch, G. Vitrant, and H. Haelterman, Phys. Rev. B 44, 7870 (1991).

    Article  ADS  Google Scholar 

  2. C. Manolatou, M. J. Khan, S. Fan, et al., IEEE J. Quantum Electron. 35, 1322 (1999).

    Article  ADS  Google Scholar 

  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, et al., Phys. Rev. B 59, 15882 (1999).

    Article  ADS  Google Scholar 

  4. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. B 62, 7389 (2000).

    Article  ADS  Google Scholar 

  5. Z. Wang and S. Fan, Phys. Rev. E 68, 066616 (2003).

    Article  ADS  Google Scholar 

  6. L.-L. Lin, Z.-Y. Li, and B. Lin, Phys. Rev. B 72, 165330 (2005).

    Article  ADS  Google Scholar 

  7. E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 78, 075105 (2008).

    Article  ADS  Google Scholar 

  8. C. S. Kim and A. M. Satanin, Phys. Rev. B 58, 15389 (1998).

    Article  ADS  Google Scholar 

  9. I. Rotter and A. F. Sadreev, Phys. Rev. E 69, 066201 (2004); Phys. Rev. E 71, 046204 (2005).

    Article  ADS  Google Scholar 

  10. A. F. Sadreev, E. N. Bulgakov, and I. Rotter, Phys. A: Math. Gen. 38, 10647 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. G. Ordonez, K. Na, and S. Kim, Phys. Rev. A 73, 022113 (2006).

    Article  ADS  Google Scholar 

  12. J. von Neumann and E. Wigner, Phys. Z. 30, 465 (1929).

    Google Scholar 

  13. F. H. Stillinger and D. R. Herrick, Phys. Rev. A 11, 446 (1975).

    Article  ADS  Google Scholar 

  14. C. Texier and G. Montambaux, J. Phys. A 34, 10307 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. E. N. Bulgakov, I. Rotter, and A. F. Sadreev, Phys. Rev. A 75, 067401 (2007).

    Article  ADS  Google Scholar 

  16. E. N. Bulgakov, K. N. Pichugin, A. F. Sadreev, and I. Rotter, JETP Lett. 82, 498 (2005).

    Article  Google Scholar 

  17. A. Z. Devdariani, V. N. Ostrovsky, and Yu. N. Sebyakin, Sov. Phys. JETP 44, 477 (1976).

    ADS  Google Scholar 

  18. H. Friedrich and D. Wintgen, Phys. Rev. A 32, 3231 (1985).

    Article  ADS  Google Scholar 

  19. F. Capasso et al., Nature (London) 358, 565 (1992).

    Article  ADS  Google Scholar 

  20. J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton Univ., Princeton, NJ, 2008).

    MATH  Google Scholar 

  21. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).

    Article  ADS  Google Scholar 

  22. K. Busch, S. F. Mingaleev, A. Garcia-Martin, et al., J. Phys.: Cond. Mat. 15, R1233 (2003).

    Article  ADS  Google Scholar 

  23. A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Yu. S. Kivshar, Phys. Rev. E 71, 036626 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  24. J. H. Marburger and F. S. Felber, Phys. Rev. A 17, 335 (1978).

    Article  ADS  Google Scholar 

  25. M. I. Molina and G. P. Tsironis, Phys. Rev. B 47, 15330 (1993).

    Article  ADS  Google Scholar 

  26. A. R. McGurn, Chaos 13, 754 (2003); J. Phys.: Cond. Mat. 16, S5243 (2004).

    Article  ADS  Google Scholar 

  27. S. Longhi, Phys. Rev. B 75, 184306 (2007).

    Article  ADS  Google Scholar 

  28. M. Miyamoto, Phys. Rev. A 72, 063405 (2005).

    Article  ADS  Google Scholar 

  29. I. Rotter, Rep. Prog. Phys. 54, 635 (1991).

    Article  ADS  Google Scholar 

  30. V. I. Smirnov, A Course of Higher Mathematics (Pergamon, Oxford, 1964), Vol. 3, Part 1.

    Google Scholar 

  31. E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 80, 115308 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulgakov, E.N., Sadreev, A.F. Bound states in photonic Fabry-Perot resonator comprised of two nonlinear off-channel defects. Jetp Lett. 90, 744–749 (2010). https://doi.org/10.1134/S0021364009240023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364009240023

Keywords

Navigation