Skip to main content
Log in

Electronic structure of SiC/BN composite segmented nanotubes

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electronic structure of segmented nanotubes composed of the alternating layers of (5,5) and (9,0) BN and SiC nanotubes in armchair and zigzag configurations, which differed in the orientation of the chemical bonds in the segments and the nature of the bonds (Si-N and B-C or Si-B and N-C) at the boundaries of BN and SiC regions, has been calculated using the linearized augmented cylindrical wave method. The calculations have been performed using the local density functional and the muffin-tin approximation for the electronic potential. It has been found that depending on the bonds at the segment boundaries, the (5,5) BN/SiC nanotubes are semiconductors with the energy gap E g of 1 to 3 eV, whereas the (9,0) BN/SiC nanotubes exhibited a metal, semimetal, or semiconductor (E g ∼ 1 eV) type of band structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk 165, 977 (1995) [Phys. Usp. 38, 935 (1995)].

    Article  Google Scholar 

  2. Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk 177, 786 (2007) [Phys. Usp. 50, 749 (2007)].

    Article  Google Scholar 

  3. P. N. D’yachkov, Carbon Nanotubes. Structure, Properties, Applications (Binom, Moscow, 2006) [in Russian].

    Google Scholar 

  4. A. Rubio, J. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994).

    Article  ADS  Google Scholar 

  5. H. J. Xiang, J. Yang, J. G. Hou, and Q. Zhu, Phys. Rev. B 68, 035427 (2003).

  6. A. V. Osadchii, E. D. Obraztsova, S. V. Terekhov, and V. Yu. Yurov, Pis’ma Zh. Eksp. Teor. Fiz. 77, 479 (2003) [JETP Lett. 77, 405 (2003)].

    Google Scholar 

  7. G. Y. Guo and J. C. Lin, Phys. Rev. B 71, 165402 (2005).

    Article  ADS  Google Scholar 

  8. N. G. Chopra, R. J. Luyken, K. Cherry, et al., Science 269, 966 (1995).

    Article  ADS  Google Scholar 

  9. A. N. Enyashin, G. Zaifert, and A. L. Ivanovskii, Pis’ma Zh. Eksp. Teor. Fiz. 80, 709 (2004) [JETP Lett. 80, 608 (2004)].

    Google Scholar 

  10. A. Yu. Golovacheva and P. N. D’yachkov, Pis’ma Zh. Eksp. Teor. Fiz. 82, 834 (2005) [JETP Lett. 82, 737 (2005)].

    Google Scholar 

  11. A. S. Romanov, D. V. Makaev, and P. N. D’yachkov, Pis’ma Zh. Eksp. Teor. Fiz. 87, 56 (2008) [JETP Lett. 87, 50 (2008)].

    Google Scholar 

  12. L. Z. Pei, Y. H. Tang, Y. W. Chen, et al., J. Appl. Phys. 99, 114306 (2006).

    Article  ADS  Google Scholar 

  13. L. Z. Pei, Y. H. Tang, X. Q. Zhao, et al., J. Appl. Phys. 100, 046105 (2006).

  14. E. Borowiak-Palen, M. H. Ruemmeli, T. Gemming, et al., J. Appl. Phys. 97, 056102 (2005).

    Google Scholar 

  15. J. Zhou, J. Liu, R. Yang, et al., Small 2, 1344 (2006).

    Article  Google Scholar 

  16. I. J. Wu and G. Y. Guo, Phys. Rev. B 76, 035343 (2007).

  17. M. Menon, E. Richter, A. Mavrandonakis, et al., Phys. Rev. B 69, 115322 (2004).

    Article  ADS  Google Scholar 

  18. M. Zhao, Y. Xia, F. Li, et al., Phys. Rev. B 71, 085312 (2005).

  19. A. Mavrandonakis, G. E. Froudakis, M. Schnell, et al., Nano Lett. 3, 1481 (2003).

    Article  ADS  Google Scholar 

  20. Y. Miyamoto and B. D. Yu, Appl. Phys. Lett. 80, 586 (2002).

    Article  ADS  Google Scholar 

  21. I. J. Wu and G. Y. Guo, Phys. Rev. B 78, 035447 (2008).

  22. R. Rurali, P. Godigonon, J. Rebollo, et al., Appl. Phys. Lett. 82, 4298 (2003).

    Article  ADS  Google Scholar 

  23. J. Hu, M. Ouyang, P. Yang, et al., Nature 399, 48 (1999).

    Article  ADS  Google Scholar 

  24. M. J. Frisch et al., Gaussian 94 (Gaussian, Inc., Pittsburgh, PA, 1995).

    Google Scholar 

  25. P. N. D’yachkov, O. M. Kepp, and A. V. Nikolaev, Dokl. Akad. Nauk 365, 215 (1999).

    Google Scholar 

  26. P. N. D’yachkov and D. V. Kirin, Dokl. Akad. Nauk 369, 639 (1999).

    MATH  Google Scholar 

  27. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 76, 195411 (2007).

    Google Scholar 

  28. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 74, 155442 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Romanov.

Additional information

Original Russian Text © A.S. Romanov, A.A. Lisenko, P.M. Silenko, P.N. D’yachkov, 2009, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 89, No. 11, pp. 660–664.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanov, A.S., Lisenko, A.A., Silenko, P.M. et al. Electronic structure of SiC/BN composite segmented nanotubes. Jetp Lett. 89, 558–562 (2009). https://doi.org/10.1134/S0021364009110071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364009110071

PACS numbers

Navigation