Skip to main content
Log in

Ionization self-compression of intense femtosecond pulses propagating through gas-filled dielectric capillaries

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A mechanism of the ionization-induced self-compression of femtosecond laser pulses propagating in a gas-filled hollow dielectric capillary has been investigated both experimentally and theoretically. In particular, the double self-compression of a laser pulse from 76 to 40 fs has been experimentally demonstrated. A theoretical model that explains the mechanism of such a self-compression and provides a good agreement with the experimental data has been developed. The model also predicts that a laser pulse shorter than 10 fs can be generated in the optimal regime with an energy efficiency exceeding the efficiency of self-compression on a filament widely discussed at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Vozzi, M. Nisoli, G. Sansone, et al., Appl. Phys. B 80, 285 (2005).

    Article  ADS  Google Scholar 

  2. T. Kobayashi, A. Shirakawa, and T. Fuji, IEEE J. Sel. Top. Quantum Electron. 7, 525 (2001).

    Article  Google Scholar 

  3. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  4. A. V. Kim, M. Yu. Ryabikin, and A. M. Sergeev, Usp. Fiz. Nauk 169, 58 (1999) [Phys. Usp. 42, 54 (1999)].

    Article  Google Scholar 

  5. A. Baltuska, Th. Udem, M. Uiberacker, et al., Nature 421, 611 (2003).

    Article  ADS  Google Scholar 

  6. V. B. Gildenburg and N. V. Vvedenskii, Phys. Rev. Lett. 98, 245002 (2007).

    Google Scholar 

  7. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).

    Article  ADS  Google Scholar 

  8. G. Tempea and T. Brabec, Opt. Lett. 23, 1286 (1998).

    Article  ADS  Google Scholar 

  9. A. A. Babin, D. V. Kartashov, A. M. Kiselev, et al., Pis’ma Zh. Eksp. Teor. Fiz. 76, 645 (2002) [JETP Lett. 76, 548 (2002)].

    Google Scholar 

  10. C. P. Hauri, W. Kornelis, F. W. Helbing, et al., Appl. Phys. B 79, 673 (2004).

    Article  ADS  Google Scholar 

  11. N. L. Wagner, E. A. Gibson, T. Popmintchev, et al., Phys. Rev. Lett. 93, 173902 (2004).

    Google Scholar 

  12. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, Opt. Lett. 31, 274 (2006).

    Article  ADS  Google Scholar 

  13. S. Skupin, G. Stibenz, L. Berge, et al., Phys. Rev. E 74, 056604 (2006).

  14. O. G. Kosareva, I. N. Murtazin, N. A. Panov, et al., Laser Phys. Lett. 4, 126 (2007).

    Article  Google Scholar 

  15. A. V. Kim, S. F. Lirin, A. M. Sergeev, et al., Phys. Rev. A 42, 2493 (1990).

    Article  ADS  Google Scholar 

  16. A. M. Sergeev, M. Lontano, A. V. Kim, et al., Laser Part. Beams 17, 129 (1999).

    Article  ADS  Google Scholar 

  17. L. A. Vainshtein, Electromagnetic Waves (Radiosvyaz, Moscow, 1988) [in Russian].

    Google Scholar 

  18. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

    Google Scholar 

  19. A. A. Babin, D.V. Kartashov, A. M. Kiselev, et al., Appl. Phys. B 75, 509 (2002).

    Article  ADS  Google Scholar 

  20. A. A. Babin, A. M. Kiselev, A. M. Sergeev, Kvant. Elektron. 31, 623 (2001) [Quantum Electron. 31, 623 (2001)].

    Article  Google Scholar 

  21. K. W. Delong and R. Trebino, J. Opt. Soc. Am. B 11, 2206 (1994).

    Article  ADS  Google Scholar 

  22. W. M. Wood, G. Focht, and M. C. Downer, Opt. Lett. 13, 984 (1988).

    Article  ADS  Google Scholar 

  23. N. L. Wagner, E. A. Gibson, T. Popmintchev, et al., Phys. Rev. Lett. 93, 173902 (2004).

    Google Scholar 

  24. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  25. N. E. Andreev, Y. Nishida, and N. Yugami, Phys. Rev. E 65, 0564071-05640710 (2002).

    Google Scholar 

  26. N. E. Andreev and S. V. Kuznetsov, Plasma Phys. Control. Fusion A 45(12), A39 (2003).

    Article  ADS  Google Scholar 

  27. V. S. Popov, Usp. Fiz. Nauk 174, 921 (2004) [Phys. Usp. 47, 1068 (2004)].

    Article  Google Scholar 

  28. A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Zh. Eksp. Teor. Fiz. 131, 408 (2007) [JETP 104, 363 (2007)]; A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Phys. Rev. A 78, 061803 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Skobelev.

Additional information

Original Russian Text © S.A. Skobelev, D.I. Kulagin, A.N. Stepanov, A.V. Kim, A.M. Sergeev, N.E. Andreev, 2009, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 89, No. 11, pp. 641–648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skobelev, S.A., Kulagin, D.I., Stepanov, A.N. et al. Ionization self-compression of intense femtosecond pulses propagating through gas-filled dielectric capillaries. Jetp Lett. 89, 540–546 (2009). https://doi.org/10.1134/S0021364009110046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364009110046

PACS numbers

Navigation