Skip to main content
Log in

Plasma-stimulated penetrability of hydrogen as a tool for studying phase transitions at grain boundaries

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It is well known that the diffusion of hydrogen atoms through the intrinsic defects of a crystal lattice has characteristics different from those of bulk diffusion and, at certain parameters for some polycrystalline metals, ensures the determining contribution to the transfer of hydrogen atoms through the material. Grain boundaries (and dislocations) are the most important and shortest paths, the diffusion through which is much faster than bulk diffusion through a crystal lattice. It is particularly important to take into account this diffusion in materials with grains having sizes of about several nanometers. The possibility of using the method of the plasma-stimulated penetrability of hydrogen to analyze phase transitions at the grain boundaries is demonstrated on the example of polycrystalline niobium foils. In contrast to the existing methods, this method proposed for studying grain-boundary diffusion and phase transitions is simple and ensures control over the surface. The temperature characteristics of the diffusion of hydrogen atoms through niobium grain boundaries have been measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Straumal, Phase Transitions on Grain Boundaries (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  2. B. B. Straumal, B. S. Bokshtein, A. B. Straumal, et al., Pis’ma Zh. Eksp. Teor. Fiz. 88, 615 (2008) [JETP Lett. 88, 537 (2008)].

    Google Scholar 

  3. I. Kaur and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Zeigler, Stuttgart, 1989).

    Google Scholar 

  4. V. B. Vykhodets, E. V. Vykhodets, B. A. Gizhevskii, et al., Pis’ma Zh. Eksp. Teor. Fiz. 87, 124 (2008) [JETP Lett. 87, 115 (2008)].

    Google Scholar 

  5. G. Counsell, P. Coad, C. Grisola, et al., Plasma Phys. Control. Fusion 48, B189 (2006).

    Article  Google Scholar 

  6. A. A. Skovoroda, V. S. Svishchov, A. V. Spitsyn, et al., J. Nucl. Mat. 306, 232 (2002).

    Article  ADS  Google Scholar 

  7. A. A. Pisarev and V. M. Smirnov, Atom. Energiya 61, 178 (1986).

    Google Scholar 

  8. A. I. Livshitz and M. E. Notkin, Zh. Tekh. Fiz. 7, 605 (1981).

    Google Scholar 

  9. Y. Hatano, A. Livshits, Y. Nakamura, et al., Fusion Eng. Design 81, 771 (2006).

    Article  Google Scholar 

  10. A. Spitsyn, A. Pisarev, A. Skovoroda, et al., J. Nucl. Mater. 363–365, 833 (2007).

    Article  Google Scholar 

  11. B. Roux, H. Jaffrezic, A. Chevarier, et al., Phys. Rev. B 52, 4162 (1995).

    Article  ADS  Google Scholar 

  12. I. Isagawa, J. Appl. Phys. 51, 4460 (1980).

    Article  ADS  Google Scholar 

  13. C. Antoine, B. Bonin, H. Safa, et al., J. Appl. Phys. 81, 1677 (1997).

    Article  ADS  Google Scholar 

  14. X. R. Qian and Y. T. Chou, Philosoph. Magazine A 45, 1075 (1982).

    Article  ADS  Google Scholar 

  15. Y. T. Chou, B. C. Cai, A. D. Romig, et al., Philosoph. Magazine A 47, 363 (1983).

    Google Scholar 

  16. Hydrogen in Metals, Ed. by G. Alfeld and J. Völkl (Springer, Berlin, Heidelberg, 1978).

    Google Scholar 

  17. V. A. Somenkov and S. Sh. Shil’shtein, “Phase Trans-formations of Hydrogen in Metals,” Preprint IAE im. Kurchatova (Moscow, 1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skovoroda.

Additional information

Original Russian Text © A.A. Skovoroda, A.V. Spitsyn, 2009, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 89, No. 10, pp. 589–592.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skovoroda, A.A., Spitsyn, A.V. Plasma-stimulated penetrability of hydrogen as a tool for studying phase transitions at grain boundaries. Jetp Lett. 89, 496–499 (2009). https://doi.org/10.1134/S0021364009100051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364009100051

PACS numbers

Navigation