Skip to main content
Log in

q-Breathers in discrete nonlinear Schrödinger arrays with weak disorder

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Nonlinearity and disorder are key players in vibrational lattice dynamics, responsible for localization and derealization phenomena. q-Breathers—periodic orbits in nonlinear lattices, exponentially localized in the reciprocal linear mode space—is a fundamental class of nonlinear oscillatory modes, currently found in disorder-free systems. In this paper we generalize the concept of q-breathers to the case of weak disorder, taking the Discrete Nonlinear Schrödinger chain as an example. We show that g-breathers retain exponential localization near the central mode, provided that disorder is sufficiently small. We analyze statistical properties of the instability threshold and uncover its sensitive dependence on a particular realization. Remarkably, the threshold can be intentionally increased or decreased by specifically arranged inhomogeneities. This effect allows us to formulate an approach to controlling the energy flow between the modes. The relevance to other model arrays and experiments with miniature mechanical lattices, light and matter waves propagation in optical potentials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fermi, J. Pasta, and S. Ulam, Los Alamos Report LA-1940 (1955); Collected Papers of Enrico Fermi, Ed. by E. Segre, Vol. II (Univ. of Chicago Press, 1965), p. 977–978; Many-Body Problems, Ed. by D. C. Mattis (World Sci., Singapore, 1993).

  2. J. Ford, Phys. Rep. 213, 271 (1992); Focus issue in Chaos 15, No. 1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  3. R. S. MacKay and S. Aubry, Nonlinearity 7, 1623 (1994); S. Flach and A. Gorbach, Phys. Rep. 467, 1 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  5. C. Albanese and J. Froehlich, Comm. Math. Phys. 138, 193 (1991); J. Archilla, R. MacKay, and J. Martin, Physica D 134, 406 (1999); G. Kopidakis and S. Aubry, Physica D 130, 155 (1999); Physica D 139, 247 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008); S. Flach, D. Krimer, and Ch. Skokos, arXiv:0805.4693 (2008); Sh. Fishman, Ye. Krivolapov, and A. Soffer, J. Stat. Phys. 131, 843 (2008).

  7. T. Shwartz et al., Nature 446, 52 (2007).

    Article  ADS  Google Scholar 

  8. J. Billy et al., Nature 453, 891 (2008); G. Roati et al., Nature 453, 895 (2008).

    Article  ADS  Google Scholar 

  9. M. Sato, B. E. Habbard, and A. J. Sievers, Rev. Mod. Phys. 78, 137 (2006); M. Sato and A. J. Sievers, Low Temp. Phys. 34, 543 (2008); E. Buks and M. L. Roukes, J. Micromech. Sys. 11, 802 (2002); M. Zalalutdinov et al., Appl. Phys. Lett. 88, 143504 (2006).

    Article  ADS  Google Scholar 

  10. Z. Y. Li et al., Nature 451, 46 (2008).

    Article  Google Scholar 

  11. S. Flach, M. V. Ivanchenko, and O. I. Kanakov, Phys. Rev. Lett. 95, 064102 (2005); Phys. Rev. E 73, 036618 (2006).

    Google Scholar 

  12. M. V. Ivanchenko et al., Phys. Rev. Lett. 97, 025505 (2006).

  13. K. G. Mishagin et al., New J. Phys. 10, 073034 (2008).

  14. J. P. Nguenang, R. A. Pinto, and S. Flach, Phys. Rev. B 75, 214303 (2007).

    Google Scholar 

  15. U. Shrestha, M. Kostrun, and J. Javanainen, Phys. Rev. Lett. 101, 070406 (2008); Sh. Jia, W. Wan, and J. W. Fleischer, Opt. Lett. 32, 1668 (2007).

  16. Yu. S. Kivshar and M. Peyrard, Phys. Rev. A 46, 3198 (1992); A. A. Morgante, M. Johansson, G. Kopidakis, and S. Aubri, Physica D 162, 53 (2002).

    Article  ADS  Google Scholar 

  17. O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).

    Article  ADS  Google Scholar 

  18. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Elsevier, Amsterdam, 2003).

    Google Scholar 

  19. J. Dieudonne, Foundations of Modern Analysis (Academic, New York, 1999).

    Google Scholar 

  20. E. W. Laedke, K. H. Spatschek, and S. K. Turitsyn, Phys. Rev. Lett. 73, 1055 (1994); E. W. Laedke et al., Phys. Rev. E 52, 5549 (1995); P. L. Christiansen et al., Phys. Scripta 67, 160 (1996).

    Article  ADS  Google Scholar 

  21. V. E. Zakharov and A. B. Shabat Zh. Eksp. Teor. Fiz. 61, 118 (1971).

    Google Scholar 

  22. T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ivanchenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanchenko, M.V. q-Breathers in discrete nonlinear Schrödinger arrays with weak disorder. Jetp Lett. 89, 150–155 (2009). https://doi.org/10.1134/S0021364009030114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364009030114

PACS numbers

Navigation