Skip to main content
Log in

Scalar and vector Keldysh models in the time domain

  • Atoms, Spectra, Radiations
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The exactly solvable Keldysh model of disordered electron system in a random scattering field with extremely long correlation length is converted to the time-dependent model with extremely long relaxation. The dynamical problem is solved for the ensemble of two-level systems (TLS) with fluctuating well depths having the discrete Z 2 symmetry. It is shown also that the symmetric TLS with fluctuating barrier transparency may be described in terms of the vector Keldysh model with dime-dependent random planar rotations in xy plane having continuous SO(2) symmetry. Application of this model to description of dynamic fluctuations in quantum dots and optical lattices is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Keldysh, Doktoral Dissertation (Lebedev Institute, Moscow, 1965).

    Google Scholar 

  2. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ, 1963).

    MATH  Google Scholar 

  3. A. L. Efros, Zh. Eksp. Teor. Fiz. 59, 880 (1970) [Sov. Phys. JETP 32, 479 (1971)].

    Google Scholar 

  4. M. E. Raikh and T. V. Shahbazyan, Phys. Rev. B 47, 1522 (1993).

    Article  ADS  Google Scholar 

  5. M. N. Kiselev, K. Kikoin, Y. Avishai, and J. Richert, Phys. Rev. B 74, 115306 (2006).

    Article  ADS  Google Scholar 

  6. M. V. Sadovskii, Diagrammatica (World Sci., Singapore, 2005).

    Google Scholar 

  7. \( (2n - 1)!! = 2^n \frac{1} {{\sqrt \pi }}\Gamma (n + 1/2) = \frac{1} {{\sqrt {2\pi } }}\smallint _{ - \infty }^\infty dtt^{2n} e^{^{ - \frac{{t^2 }} {2}} } \).

  8. The correlators \( \overline {\Delta (t)\Delta (t + \tau )} \) and \( \overline {\Delta *(t)\Delta *(t + \tau )} \) are transformed under “local” time-independent gauge transformation and therefore average to zero according to Elitzur theorem [S. Elitzur, Phys. Rev. D 12, 3978 (1975)].

    Article  ADS  Google Scholar 

  9. \( n! = G(n + 1) = \smallint _0^\infty dzz^n e^{ - z} \).

  10. M. N. Kiselev, K. Kikoin, and J. Richert, arXiv:0803.2676; Phys. Stat. Solidi (c) (in press).

  11. M. N. Kiselev and K. Kikoin (unpublished).

  12. M. N. Kiselev and Y. Gefen, Phys. Rev. Lett. 96, 066805 (2006).

    Google Scholar 

  13. I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. B 62, 14886 (2000).

    Article  ADS  Google Scholar 

  14. P. Cheinet, S. Trotzky, M. Feld, et al., Phys. Rev. Lett. 101, 090404 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Kiselev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, M.N., Kikoin, K.A. Scalar and vector Keldysh models in the time domain. Jetp Lett. 89, 114–119 (2009). https://doi.org/10.1134/S0021364009030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364009030047

PACS numbers

Navigation