Skip to main content
Log in

Spontaneous emission in dielectric nanoparticles

  • Atoms, Spectra, Radiations
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate A nano of an excited optical center in the nanoparticle to the decay rate A bulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio A nano/A bulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate A nano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio A nano/A bulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for A nano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio A nano/A bulk turns out to depend on the local-field model. The formulas for the emission and absorption cross sections σnano for nanoparticles are derived. It is shown that the ratios σnanobulk and A nano/A bulk are not equal in general, which can be used to improve the lasing parameters. The experimentally determined and theoretically evaluated decay times of metastable states of dopant rare-earth ions in crystalline YAG and Y2O3 nanoparticles are compared with the corresponding values for bulk crystals of the same structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982).

    Article  ADS  Google Scholar 

  2. G. L. J. A. Rikken and Y. A. R. R. Kessener, Phys. Rev. Lett. 74, 880 (1995).

    Article  ADS  Google Scholar 

  3. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999).

  4. R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)].

    Google Scholar 

  5. G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003).

  6. F. Vetrone, J.-C. Boyer, J. A. Capobianco, et al., Nanotechnology 15, 75 (2004).

    Article  ADS  Google Scholar 

  7. Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005).

    Article  MATH  ADS  Google Scholar 

  8. K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007).

    Article  ADS  Google Scholar 

  9. A. Einstein, Physik. Z. 18, 121 (1917).

    Google Scholar 

  10. P. A. M. Dirac, Principles of Quantum Mechanics (Oxford Univ. Press, London, 1982; Gos. Izd. Fiz.-Mat. Lit., Moscow, 1960).

    Google Scholar 

  11. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  12. A. N. Oraevskii, Usp. Fiz. Nauk 164, 415 (1994) [Phys. Usp. 37, 393 (1994)].

    Article  Google Scholar 

  13. P. W. Milonni, J. Mod. Opt. 54, 2115 (2007).

    MATH  Google Scholar 

  14. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  15. H. Kuhn, J. Chem. Phys. 53, 101 (1970).

    Article  ADS  Google Scholar 

  16. C. K. Carnigia and L. Mandel, Phys. Rev. D 3, 280 (1971).

    Article  ADS  Google Scholar 

  17. K. H. Tews, Ann. Phys (Leipzig) 29, 97 (1973).

    Article  ADS  Google Scholar 

  18. H. Morawitz and R. Philott, Phys. Rev. B 10, 4863 (1974).

    Article  ADS  Google Scholar 

  19. G. S. Agarwal, Phys. Rev. A 12, 1475 (1975).

    Article  ADS  Google Scholar 

  20. W. Lukosz and R. E. Kunz, J. Opt. Soc. Am. 67, 1607 (1977).

    Article  ADS  Google Scholar 

  21. R. R. Chance, A. Prock, and R. Sibley, Adv. Chem. Phys. 37, 1 (1978).

    Article  Google Scholar 

  22. H. Khosravi and R. Loudon, Proc. R. Soc. London A 433, 337 (1991).

    Article  ADS  Google Scholar 

  23. S. R. Brueck, V. A. Smagley, and P. G. Eliseev, Phys. Rev. E 68, 036608 (2003).

    Google Scholar 

  24. H. Chew, J. Chem. Phys. 87, 1355 (1987).

    Article  ADS  Google Scholar 

  25. H. Chew, Phys. Rev. A 38, 3410 (1988).

    Article  ADS  Google Scholar 

  26. Fam Le Kien, Nguyen Hong Quang, and K. Hakuta, Opt. Comm. 178, 151 (2000).

    Article  ADS  Google Scholar 

  27. V. V. Klimov, M. Dyuklua, and V. S. Letokhov, Kvant. Elektron. 31, 569 (2001).

    Article  Google Scholar 

  28. D. V. Guzatov and V. V. Klimov, Chem. Phys. Lett. 412, 341 (2005).

    Article  ADS  Google Scholar 

  29. W. B. Fowler and D. L. Dexter, Phys. Rev. 128, 2154 (1962).

    Article  ADS  Google Scholar 

  30. G. F. Imbush and R. Kopelman, Optical Spectroscopy of Electronic Centers in Solids, Laser Spectroscopy of Solids, Ed. by E. W. W. Yen and P. M. Selzer (Springer, Berlin, 1981), pp. 1–36.

    Google Scholar 

  31. S. F. Wuister, Celso de Mello Donega, and A. Meijerink, J. Chem. Phys. 121, 4310 (2004).

    Article  ADS  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  33. E. Yablonovitch, T. J. Gmitter, and R. Bhat, Phys. Rev. Let. 61, 2546 (1988).

    Article  ADS  Google Scholar 

  34. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London A 203, 384 (1904).

    ADS  Google Scholar 

  35. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London A 205, 237 (1906).

    Article  ADS  Google Scholar 

  36. W. F. Krupke, Phys. Rev. 145, 325 (1966).

    Article  ADS  Google Scholar 

  37. Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, et al., Zh. Éksp. Teor. Fiz. 65, 1141 (1973) [Sov. Phys. JETP 38, 565 (1973)].

    Google Scholar 

  38. T. T. Basiev, E. M. Dianov, A. M. Prokhorov, and I. A. Shcherbakov, Dokl. Akad. Nauk 216, 297 (1974) [Sov. Phys. Dokl. 19, 288 (1974)].

    Google Scholar 

  39. Yu. V. Orlovskii, O. K. Alimov, T. T. Basiev, et al., “Luminescence of Nanoparticles Y2O3:Nd3+ for Oxide Laser Ceramics,” in Proc. of the 13th All-Russian Conference on Optics and Spectroscopy of Condensed Mediums, Krasnodar, 2007, pp. 74, 75.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Pukhov.

Additional information

Original Russian Text © K.K. Pukhov, T.T. Basiev, Yu.V. Orlovskii, 2008, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 88, No. 1, pp. 14–20.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukhov, K.K., Basiev, T.T. & Orlovskii, Y.V. Spontaneous emission in dielectric nanoparticles. Jetp Lett. 88, 12–18 (2008). https://doi.org/10.1134/S0021364008130043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364008130043

PACS numbers

Navigation