Skip to main content
Log in

Structural, elastic, and electronic properties of new superhard isotropic cubic crystals of carbon nanotubes

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The models of new isotropic cubic crystals of single-layered carbon nanotubes are proposed. The structural, elastic, and electronic properties and the energies of formation of these crystals were calculated using the density functional-based tight binding (DFTB) method. The crystals proposed were found to exhibit extreme compression moduli (550–650 GPa) and a minimum compressibility (0.0018–0.0015 GPa−1); in this case, the type of conduction of the parent nanotubes was retained. For this reason, the above crystals are of interest for the development of new superhard materials with controllable electrophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Endo, H. Muramatsu, T. Hayashi, et al., Nature 433, 476 (2005).

    Article  ADS  Google Scholar 

  2. Carbon Nanotubes, Ed. by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Berlin, Heidelberg, 2001).

    Google Scholar 

  3. Carbon Nanomaterials, Ed. by Y. Gogotsi (Taylor and Francis Group, Boca Raton, London, New York, 2006).

    Google Scholar 

  4. J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).

    Article  ADS  Google Scholar 

  5. H. Liang and M. Upmanyu, Phys. Rev. Lett. 94, 065502 (2005).

    Google Scholar 

  6. C. H. Sun, F. Li, C. Liu, and C. Q. Lu, Appl. Phys. Lett. 86, 203106 (2005).

  7. M. Endo, H. Muramatsu, T. Hayashi, et al., Nature 433, 476 (2005).

    Article  ADS  Google Scholar 

  8. Y. A. Kim, H. Muramatsu, T. Hayashi, et al., Chem. Vapor Deposit. 12, 327 (2006).

    Article  Google Scholar 

  9. J. Tersoff and R. S. Ruoff, Phys. Rev. Lett. 73, 676 (1994).

    Article  ADS  Google Scholar 

  10. A. N. Enyashin, S. Gemming, and G. Seifert, Nanotechnology 18, 245702 (2007).

  11. S. Dag, R. T. Senger, and S. Ciraci, Phys. Rev. B 70, 205407 (2004).

    Google Scholar 

  12. V. R. Coluci, S. O. Dantas, A. Jorio, and D. S. Galvao, Phys. Rev. B 75, 075417 (2007).

    Google Scholar 

  13. J. M. Romo-Herrera, V. Terrones, H. Terrones, et al., Nano Lett. 7, 570 (2007).

    Article  ADS  Google Scholar 

  14. L. Zhechkov, T. Heine, S. Patchkovskii, et al., J. Chem. Theory Comput. 1, 841 (2005).

    Article  Google Scholar 

  15. G. Seifert, A. N. Enyashin, and Th. Heine, Phys. Rev. B 72, 012102 (2005).

  16. A. N. Enyashin, S. Gemming, Th. Heine, et al., Phys. Chem. Chem. Phys. 8, 3320 (2006).

    Article  Google Scholar 

  17. X. Lu and Z. Chen, Chem. Rev. 105, 3643 (2005).

    Article  Google Scholar 

  18. A. N. Enyashin and A. L. Ivanovskii, Pis’ma Zh. Éksp. Teor. Fiz. 86, 609 (2007) [JETP Lett. 86, 537 (2007)].

    Google Scholar 

  19. CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide, 75th ed. (CRC, London, 1995).

    Google Scholar 

  20. J. C. Zheng, Phys. Rev. B 72, 052105 (2005).

    Google Scholar 

  21. A. L. Ivanovskii and G. P. Shveikin, Quantum Chemistry in Materials Science. Nonmetallic Refractory Compounds and Nonmetallic Ceramics (UrO Ross. Akad. Nauk, Yekaterinburg, 2000) [in Russian].

    Google Scholar 

  22. X. F. Zhou, J. Sun, Y. X. Fan, et al., Phys. Rev. B 76, 100101 (2007).

  23. C. S. Yoo, H. Cynn, F. Gygi, et al., Phys. Rev. Lett. 83, 5527 (1999).

    Article  ADS  Google Scholar 

  24. W. C. Robert, B. W. Michelle, J. G. John, et al., J. Am. Chem. Soc. 264, 7264 (2005).

    Google Scholar 

  25. Y. Liang and B. Zhang, Phys. Rev. B 76, 132101 (2007).

  26. W. Zhou, H. Wu, and T. Yildirim, Phys. Rev. B 76, 184113 (2007).

  27. N. Dubrovinskaia, L. Dubrovinsky, W. Crichton, et al., Appl. Phys. Lett. 87, 083106 (2005).

    Google Scholar 

  28. M. Popov, M. Kyotani, R.J. Nemanich, and Y. Koga, Phys. Rev. B 65, 033408 (2002).

    Google Scholar 

  29. N. R. Serebryanaya, V. D. Blank, V. A. Ivdenko, and L. A. Chernozatonskii, Solid State Commun. 18, 183 (2001).

    Article  Google Scholar 

  30. W. B. Choi, E. Bae, and D. Kang, Nanotechnology 15, S512 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Additional information

Original Russian Text © A.N. Enyashin, A.L. Ivanovskii, 2008, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 87, No. 6, pp. 372–376.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enyashin, A.N., Ivanovskii, A.L. Structural, elastic, and electronic properties of new superhard isotropic cubic crystals of carbon nanotubes. Jetp Lett. 87, 321–325 (2008). https://doi.org/10.1134/S0021364008060118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364008060118

PACS numbers

Navigation