Skip to main content
Log in

Universal description of the rotational-vibrational spectrum of three particles with zero-range interactions

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A comprehensive universal description of the rotational-vibrational spectrum for two identical particles of mass m and a third particle of mass m 1 in the zero-range limit of the interaction between different particles is given for arbitrary values of the mass ratio m/m 1 and the total angular momentum L. It is found that the number of vibrational states is determined by the functions L c(m/m 1) and L b(m/m 1). Explicitly, if the two-body scattering length is positive, the number of states is finite for L c(m/m 1) ≤ LL b(m/m 1), zero for L > L b(m/m 1), and infinite for L < L c(m/m 1). If the two-body scattering length is negative, the number of states is zero for LL c(m/m 1) and infinite for L < L c(m/m 1). For the finite number of vibrational states, all the binding energies are described by the universal function ɛLN(m/m 1) =

(ξ, η), where ξ = (N − 1/2)/√L(L + 1), η = √m/[m 1 L(L + 1)], and N is the vibrational quantum number. This scaling dependence is in agreement with the numerical calculations for L > 2 and only slightly deviates from those for L = 1, 2. The universal description implies that the critical values L c(m/m 1) and L b(m/m 1) increase as 0.401 √m/m 1 and 0.563 √m/m 1, respectively, while the number of vibrational states for LL c(m/m 1) is within the range NN max ≈ 1.1√L(L + 1) + 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ospelkaus, S. Ospelkaus, K. Sengstock, et al., Phys. Rev. Lett. 96, 020401 (2006).

    Google Scholar 

  2. T. Karpiuk, M. Brewczyk, M. Gajda, et al., J. Phys. B 38, L215 (2005).

    Article  ADS  Google Scholar 

  3. Y. Shin, M. W. Zwierlein, C. H. Schunck, et al., Phys. Rev. Lett. 97, 030401 (2006).

    Google Scholar 

  4. F. Chevy, Phys. Rev. Lett. 96, 130401 (2006).

    Google Scholar 

  5. M. Iskin and C. A. R. Sa de Melo, Phys. Rev. Lett. 97, 100404 (2006).

    Google Scholar 

  6. F. M. Cucchietti and E. Timmermans, Phys. Rev. Lett. 96, 210401 (2006).

    Google Scholar 

  7. R. M. Kalas and D. Blume, Phys. Rev. A 73, 043608 (2006).

  8. F. M. Pen’kov, Phys. Rev. A 60, 3756 (1999).

    Article  ADS  Google Scholar 

  9. A. S. Jensen and D. V. Fedorov, Europhys. Lett. 62, 336 (2003).

    Article  ADS  Google Scholar 

  10. V. Efimov, Nucl. Phys. A 210, 157 (1973).

    Article  ADS  Google Scholar 

  11. Yu. N. Ovchinnikov and I. M. Sigal, Ann. Phys. (N.Y.) 123, 274 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  12. Yong Li, Qingdong Gou, and Tingyun Shi, Phys. Rev. A 74, 032502 (2006).

  13. J. P. D’Incao and B. D. Esry, Phys. Rev. A 73, 030702(R) (2006).

  14. M. Kh. Shermatov, Teor. Mat. Fiz. 136(2), 257 (2003) [Theor. Math. Phys. 136, 1119 (2003)].

    MathSciNet  Google Scholar 

  15. J. H. Macek and J. Sternberg, Phys. Rev. Lett. 97, 023201 (2006).

    Google Scholar 

  16. D. S. Petrov, Phys. Rev. A 67, 010703(R) (2003).

  17. D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. A 71, 012708 (2005).

    Google Scholar 

  18. O. I. Kartavtsev and A. V. Malykh, J. Phys. B 40, 1429 (2007).

    Article  ADS  Google Scholar 

  19. O. I. Kartavtsev and J. H. Macek, Few-Body Syst. 31, 249 (2002).

    Article  ADS  Google Scholar 

  20. J. H. Macek, J. Phys. B 1, 831 (1968).

    Article  ADS  Google Scholar 

  21. O. I. Kartavtsev, Few-Body Syst. Suppl. 10, 199 (1999).

    Google Scholar 

  22. O. I. Kartavtsev and A. V. Malykh, Phys. Rev. A 74, 042506 (2006).

    Google Scholar 

  23. Yu. N. Demkov and V. N. Ostrovskii, Zero-Range Potentials and Their Applications in Atomic Physics (Leningr. Gos. Univ., Leningrad, 1975; Plenum, New York, 1988).

    Google Scholar 

  24. K. Wódkiewicz, Phys. Rev. A 43, 68 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  25. Z. Idziaszek and T. Calarco, Phys. Rev. Lett. 96, 013201 (2006).

    Google Scholar 

  26. E. Braaten and H.-W. Hammer, Phys. Rev. A 67, 042706 (2003).

    Google Scholar 

  27. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953; Nauka, Moscow, 1965).

    Google Scholar 

  28. D. Blume, Phys. Rev. B 72, 094510 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartavtsev, O.I., Malykh, A.V. Universal description of the rotational-vibrational spectrum of three particles with zero-range interactions. Jetp Lett. 86, 625–629 (2008). https://doi.org/10.1134/S002136400722002X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136400722002X

PACS numbers

Navigation