Skip to main content
Log in

Photonic crystals with a specified bandgap width

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A new method is proposed for the production of photonic crystals with a thoroughly controlled photonic bandgap. The method is based on the synthesis of an A1−x B x photonic crystal with controlled parameter x based on two isostructural A and B photonic crystals such that the photonic bandgap of the A crystal is smaller and that of the B crystal is greater than the required bandgap. The method is exemplified in a (100 − x) mol % SiO2x mol % ZnO inverse opal, in which the relative stop-band width monotonically increases with parameter x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  3. S. G. Johnson and J. D. Joannopoulos, Acta Mater. 51, 5823 (2003).

    Article  Google Scholar 

  4. The Chemistry of the Semiconductor Industry, Ed. by S. J. Moss and A. Ledwith (Kluwer, Dordrecht, 1987).

    Google Scholar 

  5. S. H. Park, D. Qin, and Y. Xia, Adv. Mater. 10, 1028 (1998).

    Article  Google Scholar 

  6. P. Jiang, J. F. Bertone, K. S. Hwang, and V. Colvin, Chem. Mater. 11, 2132 (1999).

    Article  Google Scholar 

  7. A. L. Rogach, N. A. Kotov, D. S. Koktysh, et al., Chem. Mater. 12, 2721 (2000).

    Article  Google Scholar 

  8. A. Arsenault, F. Fleischhaker, G. von Freymann, et al., Adv. Mater. 18, 2779 (2006).

    Article  Google Scholar 

  9. P. V. Braun, S. A. Rinne, and F. García-Santamaría, Adv. Mater. 18, 2665 (2006).

    Article  Google Scholar 

  10. J. O. Dimmock, in The Physics of Semimetals and Narrow-Gap Semiconductors, Ed. by D. L. Carter and R. T. Bates (Pergamon, New York, 1971), pp. 319–330.

    Google Scholar 

  11. G. Nimtz and B. Schlicht, in Narrow-Gap Semiconductors, Ed. by R. Dornhaus, G. Nimtz, and B. Schlicht (Springer, Berlin, 1983), pp. 1–117.

    Chapter  Google Scholar 

  12. N. B. Brandt and E. P. Skipetrov, Fiz. Nizk. Temp. 22, 870 (1996) [Low Temp. Phys. 22, 665 (1996)].

    Google Scholar 

  13. K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).

    Article  ADS  Google Scholar 

  14. A. Blanco, E. Chomski, S. Grabtchak, et al., Nature 405, 437 (2000).

    Article  ADS  Google Scholar 

  15. J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottewill, Colloid Polym. Sci. 252, 464 (1974).

    Article  Google Scholar 

  16. A. S. Sinitskii, P. E. Khokhlov, V. V. Abramova, et al., Mendeleev Commun. 17, 4 (2007).

    Article  Google Scholar 

  17. A. Sinitskii, V. Abramova, T. Laptinskaya, and Yu. D. Tretyakov, Phys. Lett. A 366, 516 (2007).

    Article  ADS  Google Scholar 

  18. Yu. A. Vlasov, V. N. Astratov, O. Z. Karimov, et al., Phys. Rev. B 55, R13 357 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sinitskii.

Additional information

Original Russian Text © V. Abramova, A. Sinitskii, Yu. Tretyakov, 2007, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 5, pp. 370–373.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramova, V., Sinitskii, A. & Tretyakov, Y. Photonic crystals with a specified bandgap width. Jetp Lett. 86, 317–320 (2007). https://doi.org/10.1134/S0021364007170080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007170080

PACS numbers

Navigation