Skip to main content
Log in

Effect of diffusion on the velocity of stationary impact ionization waves in semiconductors

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The known theory of stationary plane impact ionization waves in gases [U. Ebert et al., Phys. Rev. E 55, 1530 (1997)] has been generalized to the bipolar case characteristic of semiconductors, where a medium is ionized by hot charge carriers of both signs. In this case, the velocity u of bipolar waves (in contrast to monopolar waves) is determined by the processes in the leading region of the front at any nonzero impact ionization rates and for any propagation directions. This property makes it possible to derive analytical formulas for u as a function of material parameters, initial perturbation, and external field strength by analyzing a boundary value problem linearized near an unstable state. In the highest achievable fields (e.g., in streamers), diffusion must give rise to an increase in u by a factor of about 3 as compared to the average drift velocity at typical parameters of semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Bartelink and D. L. Scharfetter, Appl. Phys. Lett. 14, 320 (1969).

    Article  ADS  Google Scholar 

  2. N. G. Basov, A. G. Molchanov, A. S. Nasibov, et al., Zh. Éksp. Teor. Fiz. 70, 1751 (1976) [Sov. Phys. JETP 43, 912 (1976)].

    ADS  Google Scholar 

  3. M. I. D’yakonov and V. Yu. Kachorovskiĭ, Zh. Éksp. Teor. Fiz. 94(5), 321 (1988) [Sov. Phys. JETP 67, 1049 (1988)]; Zh. Éksp. Teor. Fiz. 95, 1850 (1989) [Sov. Phys. JETP 68, 1070 (1989)]; Zh. Éksp. Teor. Fiz. 98, 895 (1990) [Sov. Phys. JETP 71, 498 (1990)].

    Google Scholar 

  4. A. S. Kyuregyan, Fiz. Tekh. Poluprovodn. (St. Petersburg) 41, 761 (2007) [Semiconductors 41, 737 (2007)].

    Google Scholar 

  5. A. I. Zakharov, I. G. Persiantsev, V. D. Pis’mennyĭ, et al., Prikl. Mekh. Tekh. Fiz., No. 1, 56 (1973).

  6. A. N. Lagar’kov and I. M. Rutkevich, Electric Breakdown Waves in Limited Plasma (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  7. U. Ebert, W. van Saarloos, and C. Caroli, Phys. Rev. Lett. 77, 4178 (1996); Phys. Rev. E 55, 1530 (1997).

    Article  ADS  Google Scholar 

  8. A. N. Kolmogorov, I. G. Petrovskiĭ, and N. S. Piskunov, Byull. Mosk. Univ., Ser. 4: Mat. Mekh. 1, 1 (1937).

    Google Scholar 

  9. W. van Saarloos, Phys. Rep. 386, 29 (2003).

    Article  MATH  ADS  Google Scholar 

  10. P. Rodin, U. Ebert, W. Hundsdorfer, and I. Grekhov, J. Appl. Phys. 92, 958 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kyuregyan.

Additional information

Original Russian Text © A.S. Kyuregyan, 2007, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 5, pp. 360–364.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyuregyan, A.S. Effect of diffusion on the velocity of stationary impact ionization waves in semiconductors. Jetp Lett. 86, 308–312 (2007). https://doi.org/10.1134/S0021364007170067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007170067

PACS numbers

Navigation