Skip to main content
Log in

Manifestation of the stochastic resonance in submerged jets under an acoustic action

  • Plasma, Gases
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A phenomenon that is similar to the well-known stochastic resonance in nonlinear oscillators but is caused by the turbulence in a circular submerged jet under a harmonic acoustic action, rather than by noise, is considered. It is shown that, at a fixed distance from the nozzle, a variation of the initial turbulence level leads to a non-monotonic variation of the wave amplitude at the frequency of the acoustic action, namely, to the appearance of an amplitude maximum at a certain level of the initial turbulence. The qualitative explanation of the phenomenon consists in that the initial turbulence acts on the system in a way similar to that of external noise: it changes the effective parameters of the system and, in particular, shifts the spectral maxima, which is equivalent to a change in a certain “eigenfrequency.” Such a change in the effective parameters of the jet leads to a phenomenon similar to the stochastic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Vlasov and A. S. Ginevskiĭ, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 4, 133 (1967).

    Google Scholar 

  2. E. V. Vlasov and A. S. Ginevskiĭ, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 6, 37 (1973).

    Google Scholar 

  3. P. S. Landa, A. A. Zaikin, A. S. Ginevsky, and Ye. V. Vlasov, Int. J. Bifurcation Chaos 9, 397 (1999).

    Article  MATH  Google Scholar 

  4. V. Kibens, AIAA J. 18, 434 (1980).

    Article  ADS  Google Scholar 

  5. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998).

    Article  ADS  Google Scholar 

  6. R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A: Math. Gen. 14, L453 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellus 34, 10 (1982).

    Article  ADS  Google Scholar 

  8. C. Nicolis, Sol. Phys. 74, 473 (1981).

    Article  ADS  Google Scholar 

  9. G. Nicolis and C. Nicolis, Tellus 33, 225 (1981).

    ADS  MathSciNet  Google Scholar 

  10. V. S. Anishchenko, A. V. Neĭman, F. Moss, and L. Shimanski-Geĭer, Usp. Fiz. Nauk 169, 7 (1999) [Phys. Usp. 42, 7 (1999)].

    Article  ADS  Google Scholar 

  11. P. E. Greenwood, L. M. Ward, D. F. Russell, et al., Phys. Rev. Lett. 84, 4773 (2000).

    Article  ADS  Google Scholar 

  12. P. Hänggi, Eur. J. Chem. Phys. Phys. Chem. 3, 285 (2002).

    Article  Google Scholar 

  13. V. S. Anishchenko, M. V. Anufrieva, and T. E. Vadivasova, Pis’ma Zh. Tekh. Fiz. 32(20) 12 (2006) [Tech. Phys. Lett. 32, 873 (2006)].

    Google Scholar 

  14. M. I. Dykman, P. V. E. McClintock, R. Mannella, and N. G. Stocks, Pis’ma Zh. Éksp. Teor. Fiz. 52, 780 (1990) [JETP Lett. 52, 141 (1990)].

    ADS  Google Scholar 

  15. P. S. Landa, Regular and Chaotic Oscillations (Springer, Berlin, 2001).

    MATH  Google Scholar 

  16. P. S. Landa and P. V. E. McClintock, submitted to Phys. Rev. E.

  17. A. Neiman and W. Sung, Phys. Lett. A 223, 341 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. S. Sinha, Physica A (Amsterdam) 270, 204 (1999).

    ADS  Google Scholar 

  19. A. Pontryagin, A. Andronov, and A. Vitt, Zh. Éksp. Teor. Fiz. 3, 165 (1933).

    Google Scholar 

  20. H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. P. S. Landa and R. L. Stratanovich, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. 1, 33 (1962).

    Google Scholar 

  22. P. S. Landa, Dokl. Akad. Nauk 339(4), 1 (2004).

    Google Scholar 

  23. P. Landa, V. Ushakov, and J. Kurths, Chaos, Solitons and Fractals 30, 574 (2006).

    Article  Google Scholar 

  24. P. S. Landa, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 3(2), 37 (1995).

    Google Scholar 

  25. D. G. Crighton and M. Gaster, J. Fluid Mech. 77, 397 (1976).

    Article  MATH  ADS  Google Scholar 

  26. P. Plaschko, J. Fluid Mech. 92, 209 (1979).

    Article  MATH  ADS  Google Scholar 

  27. A. Michalke, Prog. Aerosp. Sci. 21, 159 (1984).

    Article  Google Scholar 

  28. M. Gaster, J. Fluid Mech. 424, 367 (2000).

    Article  MATH  ADS  Google Scholar 

  29. P. S. Landa and P. V. E. McClintock, Phys. Rep. 397, 1 (2004).

    Article  ADS  Google Scholar 

  30. P. S. Landa and V. G. Ushakov, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 3, 31 (2005).

  31. A. S. Ginevskiĭ, E. V. Vlasov, and R. K. Karavosov, Acoustic Control of Turbulent Streams (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  32. Y. Y. Chan, Phys. Fluids 17, 46 (1974).

    Article  ADS  Google Scholar 

  33. P. S. Landa and P. V. E. McClintock, J. Phys. A: Math. Gen. 33, L433 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. I. I. Blekhman and P. S. Landa, Int. J. Non-linear Mech. 39, 421 (2004).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Landa.

Additional information

Original Russian Text © P.S. Landa, V.G. Ushakov, 2007, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 5, pp. 356–359.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landa, P.S., Ushakov, V.G. Manifestation of the stochastic resonance in submerged jets under an acoustic action. Jetp Lett. 86, 304–307 (2007). https://doi.org/10.1134/S0021364007170055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007170055

PACS numbers

Navigation