Skip to main content
Log in

On the tremendous effect of an electric field on the crystal lattice of quasi-one-dimensional conductors with a charge density wave

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The deformation of the lattice of quasi-one-dimensional conductors with a charge density wave deformed by an electric field has been considered. In the case of the “strong” interaction between the charge density wave and lattice, the effect of the field can be compared to the usual piezoelectric effect with a tremendous piezoelectric modulus that is larger than the value in ionic crystals by a factor of L c/λ (λ is the period of the charge density wave and L c is the coherence length reaching several millimeters upon the sliding of the charge density wave). The interaction between the charge density wave and lattice is likely attributed to the possibility of the interband redistribution of charges (rearrangement of covalent bonds) in the process of the deformation of certain compounds with the charge density wave. The observed and expected effects provide a way of the creation of fundamentally new actuators including those of nanometer sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Grüner, in Density Waves in Solids (Addison-Wesley, Reading, Mass., 1994); P. Monceau, in Electronic Properties of Inorganic Quasi-One-Dimensional Conductors, Ed. by P. Monceau (Reidel, Dordrecht, 1985), Part 2, p. 139; recent developments in Proceedings of the International Conference on Electronic Crystals (Corsica, France, 2005), J. Phys. IV, Vol. 131.

    Google Scholar 

  2. J. W. Brill, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Ed. by M. Levy, H. E. Bass, and R. R. Stern (Academic, New York, 2001), Vol. 2, pp. 143–162.

    Google Scholar 

  3. S. Hoen, B. Burk, A. Zettl, and M. Inui, Phys. Rev. B 46, 1874 (1991).

    Article  ADS  Google Scholar 

  4. A. V. Golovnya, V. Ya. Pokrovskii, and P. M. Shadrin, Phys. Rev. Lett. 88, 246401 (2002).

    Google Scholar 

  5. V. Ya. Pokrovskii, S. G. Zybtsev, and I. G. Gorlova, Phys. Rev. Lett. 98, 206404 (2007).

  6. M. E. Itkis, F. Ya. Nad’, and V. Ya. Pokrovskiĭ, Zh. Éksp. Teor. Fiz. 90, 307 (1986) [Sov. Phys. JETP 63, 177 (1986)]; S. E. Brown, L. Mihaly, and G. Gruner, Solid State Commun. 58, 231 (1986).

    ADS  Google Scholar 

  7. H. Requardt, F. Ya. Nad, P. Monceau, et al., Phys. Rev. Lett. 80, 5631 (1998); S. Brazovskii, N. Kirova, H. Requardt, et al., Phys. Rev. B 61, 10640 (2000).

    Article  ADS  Google Scholar 

  8. The charge density wave itself appears due to the lattice deformation; hence, the notion “interaction between the charge density wave and lattice” is conventional. However, this simple model of the interaction between two elastic bodies well describes the observed effects, as will be seen below.

  9. G. Mozurkewich, Phys. Rev. B 42, 11 183 (1990); L. C. Bourne and A. Zettl, Phys. Rev. B 36, 2626 (1987).

    Article  Google Scholar 

  10. J. W. Brill and W. Roark, Phys. Rev. Lett. 53, 846 (1984).

    Article  ADS  Google Scholar 

  11. R. L. Jacobsen and G. Mozurkewich, Phys. Rev. B 42, 2778 (1990).

    Article  ADS  Google Scholar 

  12. Z. G. Xu and J. W. Brill, Phys. Rev. B 45, 3953 (1992).

    Article  ADS  Google Scholar 

  13. X.-D. Xiang and J. W. Brill, Phys. Rev. B 36, 2969 (1987).

    Article  ADS  Google Scholar 

  14. A. J. Rivero, H. R. Salva, A. A. Ghilarducci, et al., Solid State Commun. 106, 13 (1998).

    Article  Google Scholar 

  15. L. C. Bourne and A. Zettl, Solid State Commun. 60, 789 (1986).

    Article  Google Scholar 

  16. V. Ya. Pokrovskii and S. V. Zaitsev-Zotov, Phys. Rev. B 50, 15 442 (1994).

  17. A. Meerschaut, J. Phys. (Paris) 44, C3-1615 (1983).

    Google Scholar 

  18. V. B. Preobrazhenskiĭ, A. N. Taldenkov, and I. Yu. Kal’nova, Pis’ma Zh. Éksp. Teor. Fiz. 40, 183 (1984) [JETP Lett. 40, 944 (1984)]; V. B. Preobrazhensky, A. N. Taldenkov, and S. Yu. Shabanov, Solid State Commun. 54, 1399 (1985); T. A. Davis, W. Schaffer, M. J. Skove, and E. P. Stillwell, Phys. Rev. B 39, 10094 (1989).

    ADS  Google Scholar 

  19. More precisely, the distribution of the strain of the charge density wave is more complex: the exponential q(x) dependence can be observed near the contacts [7]. However, the model approximation is used for simplicity.

  20. V. Ya. Pokrovskii, G. B. Meshkov, I. G Gorlova, et al., in Proceedings of Workshop on Recent Developments in Low Dimensional Charge Density Wave Conductors (Skradin, Croatia, 2006), p. 28.

    Google Scholar 

  21. Physical Encyclopedia, Ed. by A. M. Prokhorov (Bol’shaya Rossiĭskaya Éntsiklopediya, Moscow, 1994), Vol. 4, p. 189 [in Russian].

    Google Scholar 

  22. For example, http://www.nsu.ru/materials/ssl/text/metodics/ivanov1.html.

  23. A. K. Tagantsev, Usp. Fiz. Nauk 152, 423 (1987) [Sov. Phys. Usp. 30, 588 (1987)].

    Google Scholar 

  24. The electron density in the conduction band of TaS3, which is known to be equal to half an electron per lattice period (per chain) is obtained under the assumption that the oxidation degrees of the first and second halves of the Ta atoms are +4 and +5, respectively. The ratio of the concentrations of S2− and S is the same [1, 17]. It is reasonable to assume that the ratio between Ta+4 and Ta+5 can vary with strain. Note also that the charge density wave with triple period, which corresponds to 2/3 electrons per lattice period (per chain) in the conduction band, appears in the NbS3 (type II) isoelectronic compound [1].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Pokrovskiĭ.

Additional information

Original Russian Text © V.Ya. Pokrovskiĭ, 2007, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 4, pp. 290–293.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokrovskiĭ, V.Y. On the tremendous effect of an electric field on the crystal lattice of quasi-one-dimensional conductors with a charge density wave. Jetp Lett. 86, 260–263 (2007). https://doi.org/10.1134/S0021364007160096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007160096

PACS numbers

Navigation