Skip to main content
Log in

Fractional quantum Hall effect at a suppressed energy gap

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In the fractional quantum Hall effect regime, the diagonal (ρxx) and Hall (ρxy) magnetoresistivity tensor components of the two-dimensional electron system (2DES) in gated GaAs/AlxGa1−x As heterojunctions are measured together with the capacitance between 2DES and the gate. The 1/3-and 2/3-fractional quantum Hall effects are observed at rather low magnetic fields where the corresponding fractional minima in the thermodynamic density of the states have already disappeared, thus, implying the suppression of the quasiparticle energy gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Quantum Hall Effect, Ed. by R. Prange and S. M. Girvin (Springer, New York, 1987; Mir, Moscow, 1989).

    Google Scholar 

  2. R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

    Article  ADS  Google Scholar 

  3. D. E. Khmel’nitskiĭ, Pis’ma Zh. Éksp. Teor. Fiz. 38, 454 (1983) [JETP Lett. 38, 552 (1983)]; Phys. Lett. A 106A, 182 (1984); Helv. Phys. Acta 65, 164 (1992).

    Google Scholar 

  4. Bodo Huckestein, Phys. Rev. Lett. 84, 3141 (2000).

    Article  ADS  Google Scholar 

  5. S. S. Murzin, A. G. M. Jansen, and P. von der Linden, Phys. Rev. Lett. 80, 2681 (1998); S. S. Murzin, A. G. M. Jansen, and I. Claus, Phys. Rev. Lett. 92, 016802 (2004).

    Article  ADS  Google Scholar 

  6. A. M. M. Pruisken, in The Quantum Hall Effect, Ed. by R. Prange and S. M. Girvin (Springer, New York, 1987; Mir, Moscow, 1989).

    Google Scholar 

  7. C. A. Lütken and G. G. Ross, Phys. Rev. B 45, 11 837 (1992); Phys. Rev. B 48, 2500 (1993).

    Google Scholar 

  8. B. P. Dolan, Nucl. Phys. B 554, 487 (1999); J. Phys. A 32, L243 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. C. P. Burgess and B. P. Dolan, Phys. Rev. B 63, 155309 (2001).

    Google Scholar 

  10. A. M. M. Pruisken, M. A. Baranov, and B. Škorić, Phys. Rev. B 60, 16 807 (1999).

    Google Scholar 

  11. T. P. Smith, B. B. Goldberg, P. J. Stiles, and M. Heiblum, Phys. Rev. B 32, 2696 (1985).

    Article  ADS  Google Scholar 

  12. B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).

    Google Scholar 

  13. J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 68, 674 (1992); Phys. Rev. B 50, 1760 (1994).

    Article  ADS  Google Scholar 

  14. S. I. Dorozhkin, R. J. Haug, K. von Klitzing, and K. Ploog, Phys. Rev. B 51, 14 729 (1995).

    Google Scholar 

  15. S. I. Dorozhkin, A. A. Shashkin, N. B. Zhitenev, and V. T. Dolgopolov, Pis’ma Zh. Éksp. Teor. Fiz. 44, 189 (1986) [JETP Lett. 44, 241 (1986)].

    ADS  Google Scholar 

  16. G. S. Boebinger, H. L. Stormer, D. C. Tsui, et al., Phys. Rev. B 36, 7919 (1987).

    Article  ADS  Google Scholar 

  17. Xin Wan, D. N. Sheng, E. H. Rezayi, et al., Phys. Rev. B 72, 075325 (2005).

  18. F. G. Pikus and A. L. Efros, Phys. Rev. B 47, 16 395 (1993).

  19. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

    Article  ADS  Google Scholar 

  20. C. P. Burgess, R. Dib, and B. P. Dolan, Phys. Rev. B 62, 15359 (2000).

    Google Scholar 

  21. S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 46, 2223 (1992).

    Article  ADS  Google Scholar 

  22. Taking into account the complicated spin behavior of the QHE state at v = 2/3 (see Ref. [25] as the early observation and Ref. [26] for the recent progress) one may expect deviation of the real boundary from the theoretical semicircle centered at σxy = 5/8 (see Fig. 4). However, our previous study of the spin effects in sample 1 revealed complete spin polarization at v appreciably smaller 2/3 in rather high magnetic fields [27] and did not indicate depolarization at v ≈ 2/3 for the range of magnetic fields studied here. This observation and agreement between flow lines experimentally measured for this sample in Ref. [28] and theoretical ones [8, 22] justify comparison with the theory provided in Fig. 4 at least for σxy smaller and around 5/8, where conductivity trace is expected to touch the boundary.

  23. J. P. Eisenstein, H. L. Stormer, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 41, 7910 (1990).

    Article  ADS  Google Scholar 

  24. J. H. Smet, R. A. Deutschmann, F. Ertl, et al., Nature 415, 281 (2002).

    Article  ADS  Google Scholar 

  25. S. I. Dorozhkin, M. O. Dorokhova, R. J. Haug, and K. Ploog, Phys. Rev. B 55, 4089 (1997).

    Article  ADS  Google Scholar 

  26. S. S. Murzin, S. I. Dorozhkin, D. K. Maude, and A. G. M. Jansen, Phys. Rev. B 72, 195317 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murzin, S.S., Dorozhkin, S.I., Tsydynzhapov, G.E. et al. Fractional quantum Hall effect at a suppressed energy gap. Jetp Lett. 86, 139–143 (2007). https://doi.org/10.1134/S0021364007140159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007140159

PACS numbers

Navigation