Skip to main content
Log in

Fundamental length scale of quantum spacetime foam

  • Gravity, Astrophysics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It is argued that the fundamental length scale for the quantum dynamics of spacetime need not be equal to the Planck length. Possibly, this new length scale is related to a nonvanishing cosmological constant or vacuum energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Wheeler, Ann. Phys. (N.Y.) 2, 604 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. J. A. Wheeler, in Battelle Rencontres 1967, Ed. by C. M. DeWitt and J. A. Wheeler (Benjamin, New York, 1968), pp. 242–307.

    Google Scholar 

  3. S. W. Hawking, Nucl. Phys. B 144, 349 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. W. Hawking, in General Relativity: An Einstein Centenary Survey, Ed. by S. W. Hawking and W. Israel (Cambridge Univ. Press, Cambridge, 1979), Chap. 15.

    Google Scholar 

  5. T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972; Mir, Moscow, 1975), Chap. 12.

    Google Scholar 

  7. A. Einstein, Sitzungsber. K. Preuss. Akad. Wiss. 1, 142 (1917) [H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity (Dover, New York, 1952), Chap. 9].

    Google Scholar 

  8. C. M. Will, Theory and Experiment in Gravitational Physics, rev. ed. (Cambridge Univ. Press, Cambridge, 1993; Énergoatomizdat, Moscow, 1985).

    MATH  Google Scholar 

  9. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982; Mir, Moscow, 1984).

    MATH  Google Scholar 

  10. M. J. G. Veltman, in Methods in Field Theory, Les Houches 1975, Ed. by R. Balian and J. Zinn-Justin (North-Holland, Amsterdam, 1976), Course 5, Sect. 13.

    Google Scholar 

  11. R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Penrose, Gen. Relativ. Gravit. 28, 581 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics (Chicago Univ. Press, Chicago, 1994).

    Google Scholar 

  14. C. Rovelli and L. Smolin, Nucl. Phys. B 442, 593 (1995); Nucl. Phys. B 456, 753(E) (1995); gr-qc/9411005.

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Ashtekar and J. Lewandowski, Class. Quantum Grav. 21, R53 (2004); gr-qc/0404018.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. G. ’t Hooft, in Salamfestschrift: A Collection of Talks, Ed. by A. Ali, J. Ellis, and S. Randjbar-Daemi (World Sci., Singapore, 1993); gr-qc/9310026.

    Google Scholar 

  17. L. Susskind, J. Math. Phys. 36, 6377 (1995); hepth/9409089.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. A. D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967) [Sov. Phys. Dokl. 12, 1040 (1968)]; Gen. Relativ. Gravit. 32, 365 (2000).

    Google Scholar 

  19. M. Visser, Mod. Phys. Lett. A 17, 977 (2002); gr-qc/0204062.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. G. E. Volovik, in Proceedings of the 11th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, gr-qc/0612134.

  21. C. A. Mead, Phys. Rev. 135, B849 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  22. L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995); gr-qc/9403008.

    Article  ADS  Google Scholar 

  23. R. Penrose, The Road to Reality (Knopf, New York, 2005), Sec. 30.14.

    Google Scholar 

  24. S. Weinberg, Phys. Lett. 9, 357 (1964); Phys. Rev. 135, B1049 (1964).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. D. N. Spergel et al. (WMAP Collab.), Astrophys. J. Suppl. 170, 377 (2007); astro-ph/0603449.

    Article  ADS  Google Scholar 

  26. A. G. Riess, L. G. Strolger, S. Casertano, et al., Astrophys. J. 659, 98 (2007); astro-ph/0611572.

    Article  ADS  Google Scholar 

  27. V. Mukhanov, Physical Foundations of Cosmology (Cambridge Univ. Press, Cambridge, 2005).

    MATH  Google Scholar 

  28. A. D. Linde, Phys. Lett. B 129B, 177 (1983).

    ADS  MathSciNet  Google Scholar 

  29. H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).

    Article  ADS  Google Scholar 

  30. S. Bernadotte and F. R. Klinkhamer, Phys. Rev. D 75, 024028 (2007); hep-ph/0610216.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Klinkhamer.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinkhamer, F.R. Fundamental length scale of quantum spacetime foam. Jetp Lett. 86, 73–77 (2007). https://doi.org/10.1134/S0021364007140019

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007140019

PACS numbers

Navigation